These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 36916534)

  • 1. SUMOylation mediates the disassembly of the Smad4 nuclear export complex via RanGAP1 in KELOIDS.
    Lin X; Pang Q; Hu J; Sun J; Dai S; Yu Y; Xu J
    J Cell Mol Med; 2023 Apr; 27(8):1045-1055. PubMed ID: 36916534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of
    Zhang F; Yang J; Cheng Y
    Biomol Biomed; 2024 Oct; 24(6):1620-1636. PubMed ID: 38801243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sumoylation enhances the activity of the TGF-β/SMAD and HIF-1 signaling pathways in keloids.
    Lin X; Wang Y; Jiang Y; Xu M; Pang Q; Sun J; Yu Y; Shen Z; Lei R; Xu J
    Life Sci; 2020 Aug; 255():117859. PubMed ID: 32474020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Cellular Distribution of RanGAP1 Is Regulated by CRM1-Mediated Nuclear Export in Mammalian Cells.
    Cha K; Sen P; Raghunayakula S; Zhang XD
    PLoS One; 2015; 10(10):e0141309. PubMed ID: 26506250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The RanBP2/RanGAP1*SUMO1/Ubc9 SUMO E3 ligase is a disassembly machine for Crm1-dependent nuclear export complexes.
    Ritterhoff T; Das H; Hofhaus G; Schröder RR; Flotho A; Melchior F
    Nat Commun; 2016 May; 7():11482. PubMed ID: 27160050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. p53 SUMOylation promotes its nuclear export by facilitating its release from the nuclear export receptor CRM1.
    Santiago A; Li D; Zhao LY; Godsey A; Liao D
    Mol Biol Cell; 2013 Sep; 24(17):2739-52. PubMed ID: 23825024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-frame fusion of SUMO1 enhances βarrestin2's association with activated GPCRs as well as with nuclear pore complexes.
    Nagi K; Kaur S; Bai Y; Shenoy SK
    Cell Signal; 2020 Nov; 75():109759. PubMed ID: 32860951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. T-cell receptor (TCR) signaling promotes the assembly of RanBP2/RanGAP1-SUMO1/Ubc9 nuclear pore subcomplex via PKC-θ-mediated phosphorylation of RanGAP1.
    He Y; Yang Z; Zhao CS; Xiao Z; Gong Y; Li YY; Chen Y; Du Y; Feng D; Altman A; Li Y
    Elife; 2021 Jun; 10():. PubMed ID: 34110283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determinants of small ubiquitin-like modifier 1 (SUMO1) protein specificity, E3 ligase, and SUMO-RanGAP1 binding activities of nucleoporin RanBP2.
    Gareau JR; Reverter D; Lima CD
    J Biol Chem; 2012 Feb; 287(7):4740-51. PubMed ID: 22194619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RanGAP1*SUMO1 is phosphorylated at the onset of mitosis and remains associated with RanBP2 upon NPC disassembly.
    Swaminathan S; Kiendl F; Körner R; Lupetti R; Hengst L; Melchior F
    J Cell Biol; 2004 Mar; 164(7):965-71. PubMed ID: 15037602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex.
    Matunis MJ; Wu J; Blobel G
    J Cell Biol; 1998 Feb; 140(3):499-509. PubMed ID: 9456312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The RanBP2/RanGAP1-SUMO complex gates β-arrestin2 nuclear entry to regulate the Mdm2-p53 signaling axis.
    Blondel-Tepaz E; Leverve M; Sokrat B; Paradis JS; Kosic M; Saha K; Auffray C; Lima-Fernandes E; Zamborlini A; Poupon A; Gaboury L; Findlay J; Baillie GS; Enslen H; Bouvier M; Angers S; Marullo S; Scott MGH
    Oncogene; 2021 Mar; 40(12):2243-2257. PubMed ID: 33649538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ SUMOylation analysis reveals a modulatory role of RanBP2 in the nuclear rim and PML bodies.
    Saitoh N; Uchimura Y; Tachibana T; Sugahara S; Saitoh H; Nakao M
    Exp Cell Res; 2006 May; 312(8):1418-30. PubMed ID: 16688858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Characterization and Functional Analysis of Annulate Lamellae Pore Complexes in Nuclear Transport in Mammalian Cells.
    Raghunayakula S; Subramonian D; Dasso M; Kumar R; Zhang XD
    PLoS One; 2015; 10(12):e0144508. PubMed ID: 26642330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High glucose induces sumoylation of Smad4 via SUMO2/3 in mesangial cells.
    Zhou X; Gao C; Huang W; Yang M; Chen G; Jiang L; Gou F; Feng H; Ai N; Xu Y
    Biomed Res Int; 2014; 2014():782625. PubMed ID: 24971350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Nup358-RanGAP complex is required for efficient importin alpha/beta-dependent nuclear import.
    Hutten S; Flotho A; Melchior F; Kehlenbach RH
    Mol Biol Cell; 2008 May; 19(5):2300-10. PubMed ID: 18305100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The RanBP2/RanGAP1*SUMO1/Ubc9 complex: a multisubunit E3 ligase at the intersection of sumoylation and the RanGTPase cycle.
    Flotho A; Werner A
    Nucleus; 2012; 3(5):429-32. PubMed ID: 22925898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sumoylation of the GTPase Ran by the RanBP2 SUMO E3 Ligase Complex.
    Sakin V; Richter SM; Hsiao HH; Urlaub H; Melchior F
    J Biol Chem; 2015 Sep; 290(39):23589-602. PubMed ID: 26251516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ginkgolic acid improves bleomycin-induced pulmonary fibrosis by inhibiting SMAD4 SUMOylation.
    Yu L; Bian X; Zhang C; Wu Z; Huang N; Yang J; Jin W; Feng Z; Li D; Huo X; Wu T; Jiang Z; Liu X; Sun D
    Oxid Med Cell Longev; 2022; 2022():8002566. PubMed ID: 35707278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mel-18 interacts with RanGAP1 and inhibits its sumoylation.
    Zhang J; Sarge KD
    Biochem Biophys Res Commun; 2008 Oct; 375(2):252-5. PubMed ID: 18706886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.