BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 36916610)

  • 1. Expanding the Epitranscriptomic RNA Sequencing and Modification Mapping Mass Spectrometry Toolbox with Field Asymmetric Waveform Ion Mobility and Electrochemical Elution Liquid Chromatography.
    Lauman R; Kim HJ; Pino LK; Scacchetti A; Xie Y; Robison F; Sidoli S; Bonasio R; Garcia BA
    Anal Chem; 2023 Mar; 95(12):5187-5195. PubMed ID: 36916610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined hydrophilic interaction liquid chromatography-scanning field asymmetric waveform ion mobility spectrometry-time-of-flight mass spectrometry for untargeted metabolomics.
    Szykuła KM; Meurs J; Turner MA; Creaser CS; Reynolds JC
    Anal Bioanal Chem; 2019 Sep; 411(24):6309-6317. PubMed ID: 31011786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High Field Asymmetric Waveform Ion Mobility Spectrometry in Nontargeted Bottom-up Proteomics of Dried Blood Spots.
    Rosting C; Yu J; Cooper HJ
    J Proteome Res; 2018 Jun; 17(6):1997-2004. PubMed ID: 29707944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate Quantitative Proteomic Analyses Using Metabolic Labeling and High Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS).
    Pfammatter S; Bonneil E; McManus FP; Thibault P
    J Proteome Res; 2019 May; 18(5):2129-2138. PubMed ID: 30919622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-field asymmetric waveform ion mobility spectrometry for mass spectrometry-based proteomics.
    Swearingen KE; Moritz RL
    Expert Rev Proteomics; 2012 Oct; 9(5):505-17. PubMed ID: 23194268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Throughput Analyses of Therapeutic Antibodies Using High-Field Asymmetric Waveform Ion Mobility Spectrometry Combined with SampleStream and Intact Protein Mass Spectrometry.
    Shi RL; Dillon MA; Compton PD; Sawyer WS; Thorup JR; Kwong M; Chan P; Chiu CPC; Li R; Yadav R; Lee GY; Gober JG; Li Z; ElSohly AM; Ovacik AM; Koerber JT; Spiess C; Josephs JL; Tran JC
    Anal Chem; 2023 Nov; 95(47):17263-17272. PubMed ID: 37956201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orbitrap Mass Spectrometry and High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) Enable the in-Depth Analysis of Human Serum Proteoforms.
    Kline JT; Belford MW; Boeser CL; Huguet R; Fellers RT; Greer JB; Greer SM; Horn DM; Durbin KR; Dunyach JJ; Ahsan N; Fornelli L
    J Proteome Res; 2023 Nov; 22(11):3418-3426. PubMed ID: 37774690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multidimensional separation and analysis of alpha-1-acid glycoprotein N-glycopeptides using high-field asymmetric waveform ion mobility spectrometry (FAIMS) and nano-liquid chromatography tandem mass spectrometry.
    Chandler KB; Marrero Roche DE; Sackstein R
    Anal Bioanal Chem; 2023 Jan; 415(3):379-390. PubMed ID: 36401639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expanding the Depth and Sensitivity of Cross-Link Identification by Differential Ion Mobility Using High-Field Asymmetric Waveform Ion Mobility Spectrometry.
    Schnirch L; Nadler-Holly M; Siao SW; Frese CK; Viner R; Liu F
    Anal Chem; 2020 Aug; 92(15):10495-10503. PubMed ID: 32643919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved Thyreostatic Drug Detection in Animal Tissues Using Liquid Chromatography-High-Field Asymmetric Waveform Ion Mobility Spectrometry-Mass Spectrometry.
    Purves RW; Souster K; West M; Huda AM; Fisher CME; Belford MW; Shurmer BO
    J Agric Food Chem; 2022 Apr; 70(16):4785-4791. PubMed ID: 35060701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of paralytic shellfish toxins using high-field asymmetric waveform ion mobility spectrometry with liquid chromatography-mass spectrometry.
    Beach DG; Melanson JE; Purves RW
    Anal Bioanal Chem; 2015 Mar; 407(9):2473-84. PubMed ID: 25619987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Differential Ion Mobility Device Expands the Depth of Proteome Coverage and the Sensitivity of Multiplex Proteomic Measurements.
    Pfammatter S; Bonneil E; McManus FP; Prasad S; Bailey DJ; Belford M; Dunyach JJ; Thibault P
    Mol Cell Proteomics; 2018 Oct; 17(10):2051-2067. PubMed ID: 30007914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid Analysis of Anabolic Steroid Metabolites in Urine by Combining Field Asymmetric Waveform Ion Mobility Spectrometry with Liquid Chromatography and Mass Spectrometry.
    Arthur KL; Turner MA; Brailsford AD; Kicman AT; Cowan DA; Reynolds JC; Creaser CS
    Anal Chem; 2017 Jul; 89(14):7431-7437. PubMed ID: 28613840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FAIMS Enhances the Detection of PTM Crosstalk Sites.
    Adoni KR; Cunningham DL; Heath JK; Leney AC
    J Proteome Res; 2022 Apr; 21(4):930-939. PubMed ID: 35235327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of mass spectrometry performance for proteomic analyses using high-field asymmetric waveform ion mobility spectrometry (FAIMS).
    Bonneil E; Pfammatter S; Thibault P
    J Mass Spectrom; 2015 Nov; 50(11):1181-95. PubMed ID: 26505763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of paper spray ionization high-field asymmetric waveform ion mobility spectrometry for forensic applications.
    Tsai CW; Tipple CA; Yost RA
    Rapid Commun Mass Spectrom; 2018 Apr; 32(7):552-560. PubMed ID: 29380926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of Disposable Trap Column nanoLC-FAIMS-MS/MS for the Proteomic Analysis of FFPE Tissue.
    Eckert S; Chang YC; Bayer FP; The M; Kuhn PH; Weichert W; Kuster B
    J Proteome Res; 2021 Dec; 20(12):5402-5411. PubMed ID: 34735149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of collision cross section values obtained via travelling wave ion mobility-mass spectrometry and ultra high performance liquid chromatography-ion mobility-mass spectrometry: Application to the characterisation of metabolites in rat urine.
    Nye LC; Williams JP; Munjoma NC; Letertre MPM; Coen M; Bouwmeester R; Martens L; Swann JR; Nicholson JK; Plumb RS; McCullagh M; Gethings LA; Lai S; Langridge JI; Vissers JPC; Wilson ID
    J Chromatogr A; 2019 Sep; 1602():386-396. PubMed ID: 31285057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leveraging Parameter Dependencies in High-Field Asymmetric Waveform Ion-Mobility Spectrometry and Size Exclusion Chromatography for Proteome-wide Cross-Linking Mass Spectrometry.
    Sinn LR; Giese SH; Stuiver M; Rappsilber J
    Anal Chem; 2022 Mar; 94(11):4627-4634. PubMed ID: 35276035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of Segmented Ion Fractionation and Differential Ion Mobility on a Q-Exactive Hybrid Quadrupole Orbitrap Mass Spectrometer.
    Pfammatter S; Wu Z; Bonneil E; Bailey DJ; Prasad S; Belford M; Rochon J; Picard P; Lacoursière J; Dunyach JJ; Thibault P
    Anal Chem; 2021 Jul; 93(28):9817-9825. PubMed ID: 34213903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.