These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 36916700)
1. Solid-State Electrolytes in Lithium-Sulfur Batteries: Latest Progresses and Prospects. Xian C; Wang Q; Xia Y; Cao F; Shen S; Zhang Y; Chen M; Zhong Y; Zhang J; He X; Xia X; Zhang W; Tu J Small; 2023 Jun; 19(24):e2208164. PubMed ID: 36916700 [TBL] [Abstract][Full Text] [Related]
2. Solid-State Electrolytes for Lithium-Sulfur Batteries: Challenges, Progress, and Strategies. Zhu Q; Ye C; Mao D Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296802 [TBL] [Abstract][Full Text] [Related]
3. A Review on Engineering Design for Enhancing Interfacial Contact in Solid-State Lithium-Sulfur Batteries. Qi B; Hong X; Jiang Y; Shi J; Zhang M; Yan W; Lai C Nanomicro Lett; 2024 Jan; 16(1):71. PubMed ID: 38175423 [TBL] [Abstract][Full Text] [Related]
4. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes. Yu X; Manthiram A Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389 [TBL] [Abstract][Full Text] [Related]
5. Lithium/Sulfide All-Solid-State Batteries using Sulfide Electrolytes. Wu J; Liu S; Han F; Yao X; Wang C Adv Mater; 2021 Feb; 33(6):e2000751. PubMed ID: 32812301 [TBL] [Abstract][Full Text] [Related]
6. Status and Prospect of Two-Dimensional Materials in Electrolytes for All-Solid-State Lithium Batteries. Lan X; Luo N; Li Z; Peng J; Cheng HM ACS Nano; 2024 Apr; 18(13):9285-9310. PubMed ID: 38522089 [TBL] [Abstract][Full Text] [Related]
7. Recent progress and future prospects of atomic layer deposition to prepare/modify solid-state electrolytes and interfaces between electrodes for next-generation lithium batteries. Han L; Hsieh CT; Chandra Mallick B; Li J; Ashraf Gandomi Y Nanoscale Adv; 2021 May; 3(10):2728-2740. PubMed ID: 36134177 [TBL] [Abstract][Full Text] [Related]
8. Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries. Gao Z; Sun H; Fu L; Ye F; Zhang Y; Luo W; Huang Y Adv Mater; 2018 Apr; 30(17):e1705702. PubMed ID: 29468745 [TBL] [Abstract][Full Text] [Related]
9. Strategies for Enhancing the Stability of Lithium Metal Anodes in Solid-State Electrolytes. Lee H; Yoon T; Chae OB Micromachines (Basel); 2024 Mar; 15(4):. PubMed ID: 38675264 [TBL] [Abstract][Full Text] [Related]
10. Recent Developments of All-Solid-State Lithium Secondary Batteries with Sulfide Inorganic Electrolytes. Xu R; Zhang S; Wang X; Xia Y; Xia X; Wu J; Gu C; Tu J Chemistry; 2018 Apr; 24(23):6007-6018. PubMed ID: 29071773 [TBL] [Abstract][Full Text] [Related]
11. Review: Application of Bionic-Structured Materials in Solid-State Electrolytes for High-Performance Lithium Metal Batteries. Feng X; Deng N; Yu W; Peng Z; Su D; Kang W; Cheng B ACS Nano; 2024 Jun; 18(24):15387-15415. PubMed ID: 38843224 [TBL] [Abstract][Full Text] [Related]
12. Advanced Polymers in Cathodes and Electrolytes for Lithium-Sulfur Batteries: Progress and Prospects. Song Z; Jiang W; Li B; Qu Y; Mao R; Jian X; Hu F Small; 2024 May; 20(19):e2308550. PubMed ID: 38282057 [TBL] [Abstract][Full Text] [Related]
13. Toward High-Energy-Density Lithium Metal Batteries: Opportunities and Challenges for Solid Organic Electrolytes. Wang X; Kerr R; Chen F; Goujon N; Pringle JM; Mecerreyes D; Forsyth M; Howlett PC Adv Mater; 2020 May; 32(18):e1905219. PubMed ID: 31961989 [TBL] [Abstract][Full Text] [Related]
14. Recent Progress in High-Performance Lithium Sulfur Batteries: The Emerging Strategies for Advanced Separators/Electrolytes Based on Nanomaterials and Corresponding Interfaces. Wang X; Deng N; Wei L; Yang Q; Xiang H; Wang M; Cheng B; Kang W Chem Asian J; 2021 Oct; 16(19):2852-2870. PubMed ID: 34265166 [TBL] [Abstract][Full Text] [Related]
15. Recent progress and perspectives on metal-organic frameworks as solid-state electrolytes for lithium batteries. Wang X; Jin S; Liu Z Chem Commun (Camb); 2024 May; 60(41):5369-5390. PubMed ID: 38687504 [TBL] [Abstract][Full Text] [Related]
16. Insight into the role of crystallinity in oxide electrolytes enabling high-performance all-solid-state lithium-sulfur batteries. Sun S; Cui X; Ma Q; Wang J; Ma M; Yao X; Cai Q; Li J; Chen X; Wang Z; Zhuang R; Mu P; Zhu L; Liu J; Yan W J Colloid Interface Sci; 2023 Nov; 650(Pt A):659-668. PubMed ID: 37437445 [TBL] [Abstract][Full Text] [Related]
17. Regulation of the Interfaces Between Argyrodite Solid Electrolytes and Lithium Metal Anode. Pang B; Gan Y; Xia Y; Huang H; He X; Zhang W Front Chem; 2022; 10():837978. PubMed ID: 35178377 [TBL] [Abstract][Full Text] [Related]
18. Progress and Perspective of Glass-Ceramic Solid-State Electrolytes for Lithium Batteries. Lin L; Guo W; Li M; Qing J; Cai C; Yi P; Deng Q; Chen W Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37048952 [TBL] [Abstract][Full Text] [Related]
19. High Energy Density Solid State Lithium Metal Batteries Enabled by Sub-5 µm Solid Polymer Electrolytes. He F; Tang W; Zhang X; Deng L; Luo J Adv Mater; 2021 Nov; 33(45):e2105329. PubMed ID: 34536045 [TBL] [Abstract][Full Text] [Related]
20. Sulfide-Based All-Solid-State Lithium-Sulfur Batteries: Challenges and Perspectives. Zhu X; Wang L; Bai Z; Lu J; Wu T Nanomicro Lett; 2023 Mar; 15(1):75. PubMed ID: 36976391 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]