These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 36916734)

  • 1. Dissipative Systems Driven by the Decarboxylation of Activated Carboxylic Acids.
    Del Giudice D; Di Stefano S
    Acc Chem Res; 2023 Apr; 56(7):889-899. PubMed ID: 36916734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissipative Dynamic Covalent Chemistry (DDCvC) Based on the Transimination Reaction.
    Del Giudice D; Valentini M; Melchiorre G; Spatola E; Di Stefano S
    Chemistry; 2022 May; 28(26):e202200685. PubMed ID: 35262992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling of the Decarboxylation of 2-Cyano-2-phenylpropanoic Acid to Large-Amplitude Motions: A Convenient Fuel for an Acid-Base-Operated Molecular Switch.
    Berrocal JA; Biagini C; Mandolini L; Di Stefano S
    Angew Chem Int Ed Engl; 2016 Jun; 55(24):6997-7001. PubMed ID: 27145060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Doubly Dissipative System Driven by Chemical and Radiative Stimuli.
    Valentini M; Frateloreto F; Conti M; Cacciapaglia R; Del Giudice D; Di Stefano S
    Chemistry; 2023 Sep; 29(49):e202301835. PubMed ID: 37326465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoinduced Release of a Chemical Fuel for Acid-Base-Operated Molecular Machines.
    Biagini C; Di Pietri F; Mandolini L; Lanzalunga O; Di Stefano S
    Chemistry; 2018 Jul; 24(40):10122-10127. PubMed ID: 29697159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Hydrolysis of the Anhydride of 2-Cyano-2-phenylpropanoic Acid Triggers the Repeated Back and Forth Motions of an Acid-Base Operated Molecular Switch.
    Biagini C; Capocasa G; Cataldi V; Del Giudice D; Mandolini L; Di Stefano S
    Chemistry; 2019 Nov; 25(66):15205-15211. PubMed ID: 31573109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissipative Catalysis with a Molecular Machine.
    Biagini C; Fielden SDP; Leigh DA; Schaufelberger F; Di Stefano S; Thomas D
    Angew Chem Int Ed Engl; 2019 Jul; 58(29):9876-9880. PubMed ID: 31111628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fuel-Driven Transient Crystallization of a Cucurbit[8]uril-Based Host-Guest Complex.
    Choi S; Mukhopadhyay RD; Kim Y; Hwang IC; Hwang W; Ghosh SK; Baek K; Kim K
    Angew Chem Int Ed Engl; 2019 Nov; 58(47):16850-16853. PubMed ID: 31544353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signal Transduction Allows Temporal Control of the Potential of a Concentration Cell Driven by the Decarboxylation of an Activated Carboxylic Acid.
    Capocasa G; Frateloreto F; Correale Cavallari S; Valentini M; Lanzalunga O; Di Stefano S
    Chemistry; 2024 Mar; 30(13):e202303897. PubMed ID: 38078495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient and Dissipative Host-Guest Hydrogels Regulated by Consumption of a Reactive Chemical Fuel.
    Su B; Chi T; Ye Z; Xiang Y; Dong P; Liu D; Addonizio CJ; Webber MJ
    Angew Chem Int Ed Engl; 2023 Mar; 62(11):e202216537. PubMed ID: 36598411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Out-of-Equilibrium Colloidal Assembly Driven by Chemical Reaction Networks.
    van Ravensteijn BGP; Voets IK; Kegel WK; Eelkema R
    Langmuir; 2020 Sep; 36(36):10639-10656. PubMed ID: 32787015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical-Fuel-Driven Assembly in Macromolecular Science: Recent Advances and Challenges.
    Leng Z; Peng F; Hao X
    Chempluschem; 2020 Jun; 85(6):1190-1199. PubMed ID: 32584522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable cyclic operation of dissipative molecular switches based on anion recognition.
    Zhang X; Mao L; He R; Shi Y; Li L; Li S; Zhu C; Zhang Y; Ma D
    Chem Commun (Camb); 2024 Jan; 60(9):1180-1183. PubMed ID: 38193867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variations in the fuel structure control the rate of the back and forth motions of a chemically fuelled molecular switch.
    Biagini C; Albano S; Caruso R; Mandolini L; Berrocal JA; Di Stefano S
    Chem Sci; 2018 Jan; 9(1):181-188. PubMed ID: 29629086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissipative Gated and Cascaded DNA Networks.
    Zhou Z; Ouyang Y; Wang J; Willner I
    J Am Chem Soc; 2021 Apr; 143(13):5071-5079. PubMed ID: 33755445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fuel-Mediated Transient Clustering of Colloidal Building Blocks.
    van Ravensteijn BGP; Hendriksen WE; Eelkema R; van Esch JH; Kegel WK
    J Am Chem Soc; 2017 Jul; 139(29):9763-9766. PubMed ID: 28671466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissipative operation of pH-responsive DNA-based nanodevices.
    Mariottini D; Del Giudice D; Ercolani G; Di Stefano S; Ricci F
    Chem Sci; 2021 Sep; 12(35):11735-11739. PubMed ID: 34659709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pumping between phases with a pulsed-fuel molecular ratchet.
    Thomas D; Tetlow DJ; Ren Y; Kassem S; Karaca U; Leigh DA
    Nat Nanotechnol; 2022 Jul; 17(7):701-707. PubMed ID: 35379944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient Self-assembly Processes Operated by Gaseous Fuels under Out-of-Equilibrium Conditions.
    Mukhopadhyay RD; Choi S; Sen SK; Hwang IC; Kim K
    Chem Asian J; 2020 Dec; 15(23):4118-4123. PubMed ID: 33135872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal Control over Transient Chemical Systems using Structurally Diverse Chemical Fuels.
    Chen JL; Maiti S; Fortunati I; Ferrante C; Prins LJ
    Chemistry; 2017 Aug; 23(48):11549-11559. PubMed ID: 28544114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.