These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36916911)

  • 1. Characterization of the Positive Transcription Regulator PfaR for Improving Eicosapentaenoic Acid Production in Shewanella putrefaciens W3-18-1.
    Wei H; He P; Yu D; Liu S; Li C; Qiu D
    Appl Environ Microbiol; 2023 Apr; 89(4):e0002123. PubMed ID: 36916911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FlrA Represses Transcription of the Biofilm-Associated bpfA Operon in Shewanella putrefaciens.
    Cheng YY; Wu C; Wu JY; Jia HL; Wang MY; Wang HY; Zou SM; Sun RR; Jia R; Xiao YZ
    Appl Environ Microbiol; 2017 Feb; 83(4):. PubMed ID: 27986717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined genomics and experimental analyses of respiratory characteristics of Shewanella putrefaciens W3-18-1.
    Qiu D; Wei H; Tu Q; Yang Y; Xie M; Chen J; Pinkerton MH; Liang Y; He Z; Zhou J
    Appl Environ Microbiol; 2013 Sep; 79(17):5250-7. PubMed ID: 23811511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of UndA and MtrC of Shewanella putrefaciens W3-18-1 in iron reduction.
    Yang Y; Chen J; Qiu D; Zhou J
    BMC Microbiol; 2013 Nov; 13():267. PubMed ID: 24274142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering of EPA/DHA omega-3 fatty acid production by Lactococcus lactis subsp. cremoris MG1363.
    Amiri-Jami M; Lapointe G; Griffiths MW
    Appl Microbiol Biotechnol; 2014 Apr; 98(7):3071-80. PubMed ID: 24389665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the eicosapentaenoic acid biosynthesis gene cluster from Shewanella sp. strain SCRC-2738.
    Orikasa Y; Yamada A; Yu R; Ito Y; Nishida T; Yumoto I; Watanabe K; Okuyama H
    Cell Mol Biol (Noisy-le-grand); 2004 Jul; 50(5):625-30. PubMed ID: 15565743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and characterization of the eicosapentaenoic acid biosynthesis gene cluster from Shewanella sp. BR-2.
    Lee SJ; Seo PS; Kim CH; Kwon O; Hur BK; Seo JW
    J Microbiol Biotechnol; 2009 Sep; 19(9):881-7. PubMed ID: 19809243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing Eicosapentaenoic Acid Production by Grafting a Heterologous Polyketide Synthase Pathway in the Thraustochytrid
    Wang S; Lan C; Wang Z; Wan W; Zhang H; Cui Q; Song X
    J Agric Food Chem; 2020 Oct; 68(40):11253-11260. PubMed ID: 32829640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of psychrophile Shewanella sp. KMG427 as an eicosapentaenoic acid producer.
    Lee WH; Cho KW; Park SY; Shin KS; Lee DS; Hwang SK; Seo SJ; Kim JM; Ghim SY; Song BH; Lee SH; Kim JG
    J Microbiol Biotechnol; 2008 Dec; 18(12):1869-73. PubMed ID: 19131686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SO2426 is a positive regulator of siderophore expression in Shewanella oneidensis MR-1.
    Henne KL; Wan XF; Wei W; Thompson DK
    BMC Microbiol; 2011 May; 11():125. PubMed ID: 21624143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathogenic strains of
    Domínguez-Maqueda M; Pérez-Gómez O; Grande-Pérez A; Esteve C; Seoane P; Tapia-Paniagua ST; Balebona MC; Moriñigo MA
    PeerJ; 2022; 10():e14248. PubMed ID: 36312754
    [No Abstract]   [Full Text] [Related]  

  • 12. Possible biosynthetic pathways for all cis-3,6,9,12,15,19,22, 25,28-hentriacontanonaene in bacteria.
    Sugihara S; Hori R; Nakanowatari H; Takada Y; Yumoto I; Morita N; Yano Y; Watanabe K; Okuyama H
    Lipids; 2010 Feb; 45(2):167-77. PubMed ID: 20037794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recombinant production of omega-3 fatty acids in Escherichia coli using a gene cluster isolated from Shewanella baltica MAC1.
    Amiri-Jami M; Griffiths MW
    J Appl Microbiol; 2010 Dec; 109(6):1897-905. PubMed ID: 20666868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative Transcriptome Analysis of
    Yan J; Yang Z; Xie J
    Front Cell Infect Microbiol; 2022; 12():851521. PubMed ID: 35811677
    [No Abstract]   [Full Text] [Related]  

  • 15. Proteomic assessment of the role of N-acyl homoserine lactone in Shewanella putrefaciens spoilage.
    Zhang C; Zhu S; Jatt AN; Pan Y; Zeng M
    Lett Appl Microbiol; 2017 Nov; 65(5):388-394. PubMed ID: 28833381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Labelling of eicosapentaenoic acid with stable isotope
    Tejerina J; Ryan J; Vyssotski M; Lagutin K; Lu Y; Visnovsky G
    J Microbiol Methods; 2023 Jan; 204():106633. PubMed ID: 36462663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved eicosapentaenoic acid production in Pythium splendens RBB-5 based on metabolic regulation analysis.
    Ren L; Zhou P; Zhu Y; Zhang R; Yu L
    Appl Microbiol Biotechnol; 2017 May; 101(9):3769-3780. PubMed ID: 28083652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of eicosapentaenoic acid from marine bacteria.
    Yazawa K
    Lipids; 1996 Mar; 31 Suppl():S297-300. PubMed ID: 8729138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eicosapentaenoic acid plays a beneficial role in membrane organization and cell division of a cold-adapted bacterium, Shewanella livingstonensis Ac10.
    Kawamoto J; Kurihara T; Yamamoto K; Nagayasu M; Tani Y; Mihara H; Hosokawa M; Baba T; Sato SB; Esaki N
    J Bacteriol; 2009 Jan; 191(2):632-40. PubMed ID: 19011019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sodium Lactate Negatively Regulates Shewanella putrefaciens CN32 Biofilm Formation via a Three-Component Regulatory System (LrbS-LrbA-LrbR).
    Liu C; Yang J; Liu L; Li B; Yuan H; Liu W
    Appl Environ Microbiol; 2017 Jul; 83(14):. PubMed ID: 28500045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.