BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 36917207)

  • 21. Lipophilic triphenylphosphonium cations inhibit mitochondrial electron transport chain and induce mitochondrial proton leak.
    Trnka J; Elkalaf M; Anděl M
    PLoS One; 2015; 10(4):e0121837. PubMed ID: 25927600
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mitochondria-targeting drug conjugates for cytotoxic, anti-oxidizing and sensing purposes: current strategies and future perspectives.
    Battogtokh G; Choi YS; Kang DS; Park SJ; Shim MS; Huh KM; Cho YY; Lee JY; Lee HS; Kang HC
    Acta Pharm Sin B; 2018 Oct; 8(6):862-880. PubMed ID: 30505656
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enabling Mitochondrial Uptake of Lipophilic Dications Using Methylated Triphenylphosphonium Moieties.
    Ong HC; Hu Z; Coimbra JTS; Ramos MJ; Kon OL; Xing B; Yeow EKL; Fernandes PA; García F
    Inorg Chem; 2019 Jul; 58(13):8293-8299. PubMed ID: 31184865
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mitochondria-Targeting Polydopamine Nanoparticles To Deliver Doxorubicin for Overcoming Drug Resistance.
    Li WQ; Wang Z; Hao S; He H; Wan Y; Zhu C; Sun LP; Cheng G; Zheng SY
    ACS Appl Mater Interfaces; 2017 May; 9(20):16793-16802. PubMed ID: 28481505
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium-PEG-PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo.
    Biswas S; Dodwadkar NS; Deshpande PP; Torchilin VP
    J Control Release; 2012 May; 159(3):393-402. PubMed ID: 22286008
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rational discovery and development of a mitochondria-targeted antioxidant based on cinnamic acid scaffold.
    Teixeira J; Soares P; Benfeito S; Gaspar A; Garrido J; Murphy MP; Borges F
    Free Radic Res; 2012 May; 46(5):600-11. PubMed ID: 22292941
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanism of inhibition of FaDu hypopharyngeal carcinoma cell growth by tetraphenylphosphonium chloride.
    Rideout D; Bustamante A; Patel J
    Int J Cancer; 1994 Apr; 57(2):247-53. PubMed ID: 8157363
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications.
    Zielonka J; Joseph J; Sikora A; Hardy M; Ouari O; Vasquez-Vivar J; Cheng G; Lopez M; Kalyanaraman B
    Chem Rev; 2017 Aug; 117(15):10043-10120. PubMed ID: 28654243
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrophobized triphenyl phosphonium derivatives for the preparation of mitochondriotropic liposomes: choice of hydrophobic anchor influences cytotoxicity but not mitochondriotropic effect.
    Benien P; Solomon MA; Nguyen P; Sheehan EM; Mehanna AS; D'Souza GG
    J Liposome Res; 2016; 26(1):21-7. PubMed ID: 25811811
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Supramolecular Induction of Mitochondrial Aggregation and Fusion.
    Sun C; Wang Z; Yue L; Huang Q; Cheng Q; Wang R
    J Am Chem Soc; 2020 Sep; 142(39):16523-16527. PubMed ID: 32846083
    [TBL] [Abstract][Full Text] [Related]  

  • 31. TPP-based conjugates: potential targeting ligands.
    Batheja S; Gupta S; Tejavath KK; Gupta U
    Drug Discov Today; 2024 Jun; 29(6):103983. PubMed ID: 38641237
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interaction of the mitochondria-targeted antioxidant MitoQ with phospholipid bilayers and ubiquinone oxidoreductases.
    James AM; Sharpley MS; Manas AR; Frerman FE; Hirst J; Smith RA; Murphy MP
    J Biol Chem; 2007 May; 282(20):14708-18. PubMed ID: 17369262
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of Protein Corona on Mitochondrial Targeting Ability and Cytotoxicity of Triphenylphosphonium Conjugated with Polyglycerol-Functionalized Nanodiamond.
    Zou Y; Nishikawa M; Kang HG; Cheng G; Wang W; Wang Y; Komatsu N
    Mol Pharm; 2021 Jul; 18(7):2823-2832. PubMed ID: 34165304
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancing the Mitochondrial Uptake of Phosphonium Cations by Carboxylic Acid Incorporation.
    Pala L; Senn HM; Caldwell ST; Prime TA; Warrington S; Bright TP; Prag HA; Wilson C; Murphy MP; Hartley RC
    Front Chem; 2020; 8():783. PubMed ID: 33033715
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploiting mitochondrial targeting signal(s), TPP and bis-TPP, for eradicating cancer stem cells (CSCs).
    Ozsvari B; Sotgia F; Lisanti MP
    Aging (Albany NY); 2018 Feb; 10(2):229-240. PubMed ID: 29466249
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics.
    Marrache S; Dhar S
    Proc Natl Acad Sci U S A; 2012 Oct; 109(40):16288-93. PubMed ID: 22991470
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury.
    Adlam VJ; Harrison JC; Porteous CM; James AM; Smith RA; Murphy MP; Sammut IA
    FASEB J; 2005 Jul; 19(9):1088-95. PubMed ID: 15985532
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Redox-triggered activation of nanocarriers for mitochondria-targeting cancer chemotherapy.
    Zhou W; Yu H; Zhang LJ; Wu B; Wang CX; Wang Q; Deng K; Zhuo RX; Huang SW
    Nanoscale; 2017 Nov; 9(43):17044-17053. PubMed ID: 29083424
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fine-tuning the hydrophobicity of a mitochondria-targeted antioxidant.
    Asin-Cayuela J; Manas AR; James AM; Smith RA; Murphy MP
    FEBS Lett; 2004 Jul; 571(1-3):9-16. PubMed ID: 15280009
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Semitelechelic HPMA copolymers functionalized with triphenylphosphonium as drug carriers for membrane transduction and mitochondrial localization.
    Callahan J; Kopecek J
    Biomacromolecules; 2006 Aug; 7(8):2347-56. PubMed ID: 16903681
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.