These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 36917573)
1. Individual reflectance of solar radiation confers a thermoregulatory benefit to dimorphic males bees (Centris pallida) using distinct microclimates. Barrett M; O'Donnell S PLoS One; 2023; 18(3):e0271250. PubMed ID: 36917573 [TBL] [Abstract][Full Text] [Related]
2. Neuroanatomical differentiation associated with alternative reproductive tactics in male arid land bees, Centris pallida and Amegilla dawsoni. Barrett M; Schneider S; Sachdeva P; Gomez A; Buchmann S; O'Donnell S J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2021 Jul; 207(4):497-504. PubMed ID: 34091709 [TBL] [Abstract][Full Text] [Related]
3. Black wildebeest seek shade less and use solar orientation behavior more than do blue wildebeest. Lease HM; Murray IW; Fuller A; Hetem RS J Therm Biol; 2014 Oct; 45():150-6. PubMed ID: 25436964 [TBL] [Abstract][Full Text] [Related]
4. Seasonal adjustment of solar heat gain independent of coat coloration in a desert mammal. Walsberg GE; Weaver T; Wolf BO Physiol Zool; 1997; 70(2):150-7. PubMed ID: 9231387 [TBL] [Abstract][Full Text] [Related]
5. Thermal consequences of colour and near-infrared reflectance. Stuart-Fox D; Newton E; Clusella-Trullas S Philos Trans R Soc Lond B Biol Sci; 2017 Jul; 372(1724):. PubMed ID: 28533462 [TBL] [Abstract][Full Text] [Related]
6. Thermal implications of interactions between insulation, solar reflectance, and fur structure in the summer coats of diverse species of kangaroo. Dawson TJ; Maloney SK J Comp Physiol B; 2017 Apr; 187(3):517-528. PubMed ID: 27803973 [TBL] [Abstract][Full Text] [Related]
7. Heat tolerance in desert rodents is correlated with microclimate at inter- and intraspecific levels. van Jaarsveld B; Bennett NC; Kemp R; Czenze ZJ; McKechnie AE J Comp Physiol B; 2021 May; 191(3):575-588. PubMed ID: 33638667 [TBL] [Abstract][Full Text] [Related]
8. Heating rates are more strongly influenced by near-infrared than visible reflectance in beetles. Wang LY; Franklin AM; Black JR; Stuart-Fox D J Exp Biol; 2021 Oct; 224(19):. PubMed ID: 34494652 [TBL] [Abstract][Full Text] [Related]
9. Time-of-day effects of exposure to solar radiation on thermoregulation during outdoor exercise in the heat. Otani H; Goto T; Goto H; Shirato M Chronobiol Int; 2017; 34(9):1224-1238. PubMed ID: 28910548 [TBL] [Abstract][Full Text] [Related]
10. Mechanisms of thermal balance in flying Centris pallida (Hymenoptera: Anthophoridae). Roberts SP; Harrison JF; Hadley NF J Exp Biol; 1998 Aug; 201(Pt 15):2321-31. PubMed ID: 9662503 [TBL] [Abstract][Full Text] [Related]
11. Climate predicts both visible and near-infrared reflectance in butterflies. Kang C; Im S; Lee WY; Choi Y; Stuart-Fox D; Huertas B Ecol Lett; 2021 Sep; 24(9):1869-1879. PubMed ID: 34174001 [TBL] [Abstract][Full Text] [Related]
12. Effects of solar radiation and wind speed on metabolic heat production by two mammals with contrasting coat colours. Walsberg GE; Wolf BO J Exp Biol; 1995 Jul; 198(Pt 7):1499-507. PubMed ID: 7658187 [TBL] [Abstract][Full Text] [Related]
13. Effects of complex radiative and convective environments on the thermal biology of the white-crowned sparrow (Zonotrichia leucophrys gambelii). Wolf BO; Wooden KM; Walsberg GE J Exp Biol; 2000 Feb; 203(Pt 4):803-11. PubMed ID: 10648222 [TBL] [Abstract][Full Text] [Related]
14. Advanced modelling of the transport phenomena across horizontal clothing microclimates with natural convection. Mayor TS; Couto S; Psikuta A; Rossi RM Int J Biometeorol; 2015 Dec; 59(12):1875-89. PubMed ID: 25994799 [TBL] [Abstract][Full Text] [Related]
15. Latitudinal variation in biophysical characteristics of avian eggshells to cope with differential effects of solar radiation. Gómez J; Ramo C; Stevens M; Liñán-Cembrano G; Rendón MA; Troscianko JT; Amat JA Ecol Evol; 2018 Aug; 8(16):8019-8029. PubMed ID: 30250681 [TBL] [Abstract][Full Text] [Related]
16. Human scalp hair as a thermoregulatory adaptation. Lasisi T; Smallcombe JW; Kenney WL; Shriver MD; Zydney B; Jablonski NG; Havenith G Proc Natl Acad Sci U S A; 2023 Jun; 120(24):e2301760120. PubMed ID: 37279270 [TBL] [Abstract][Full Text] [Related]
17. A desert bee thermoregulates with an abdominal convector during flight. Johnson MG; Glass JR; Harrison JF J Exp Biol; 2022 Oct; 225(19):. PubMed ID: 36093639 [TBL] [Abstract][Full Text] [Related]
18. Hot and bothered: The role of behaviour and microclimates in buffering species from rising temperatures. Senior RA J Anim Ecol; 2020 Nov; 89(11):2392-2396. PubMed ID: 33460111 [TBL] [Abstract][Full Text] [Related]
19. The fur of mammals in exposed environments; do crypsis and thermal needs necessarily conflict? The polar bear and marsupial koala compared. Dawson TJ; Webster KN; Maloney SK J Comp Physiol B; 2014 Feb; 184(2):273-84. PubMed ID: 24366474 [TBL] [Abstract][Full Text] [Related]
20. Solar Radiation Exposure Has Diurnal Effects on Thermoregulatory Responses During High-Intensity Exercise in the Heat Outdoors. Otani H; Goto T; Goto H; Hosokawa Y; Shirato M J Strength Cond Res; 2019 Oct; 33(10):2608-2615. PubMed ID: 31361730 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]