These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36917599)

  • 1. AFTM: a database of transmembrane regions in the human proteome predicted by AlphaFold.
    Pei J; Cong Q
    Database (Oxford); 2023 Mar; 2023():. PubMed ID: 36917599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TMbed: transmembrane proteins predicted through language model embeddings.
    Bernhofer M; Rost B
    BMC Bioinformatics; 2022 Aug; 23(1):326. PubMed ID: 35941534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membranome 3.0: Database of single-pass membrane proteins with AlphaFold models.
    Lomize AL; Schnitzer KA; Todd SC; Cherepanov S; Outeiral C; Deane CM; Pogozheva ID
    Protein Sci; 2022 May; 31(5):e4318. PubMed ID: 35481632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TmAlphaFold database: membrane localization and evaluation of AlphaFold2 predicted alpha-helical transmembrane protein structures.
    Dobson L; Szekeres LI; Gerdán C; Langó T; Zeke A; Tusnády GE
    Nucleic Acids Res; 2023 Jan; 51(D1):D517-D522. PubMed ID: 36318239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TMFoldRec: a statistical potential-based transmembrane protein fold recognition tool.
    Kozma D; Tusnády GE
    BMC Bioinformatics; 2015 Jun; 16():201. PubMed ID: 26123059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TMSEG: Novel prediction of transmembrane helices.
    Bernhofer M; Kloppmann E; Reeb J; Rost B
    Proteins; 2016 Nov; 84(11):1706-1716. PubMed ID: 27566436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The human transmembrane proteome.
    Dobson L; Reményi I; Tusnády GE
    Biol Direct; 2015 May; 10():31. PubMed ID: 26018427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TMCrys: predict propensity of success for transmembrane protein crystallization.
    Varga JK; Tusnády GE
    Bioinformatics; 2018 Sep; 34(18):3126-3130. PubMed ID: 29718100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PDBTM: Protein Data Bank of transmembrane proteins after 8 years.
    Kozma D; Simon I; Tusnády GE
    Nucleic Acids Res; 2013 Jan; 41(Database issue):D524-9. PubMed ID: 23203988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membranome: a database for proteome-wide analysis of single-pass membrane proteins.
    Lomize AL; Lomize MA; Krolicki SR; Pogozheva ID
    Nucleic Acids Res; 2017 Jan; 45(D1):D250-D255. PubMed ID: 27510400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of Metal Ion Binding Sites of Transmembrane Proteins.
    Qu J; Yin SS; Wang H
    Comput Math Methods Med; 2021; 2021():2327832. PubMed ID: 34721655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myelin-Associated MAL and PLP Are Unusual among Multipass Transmembrane Proteins in Preferring Ordered Membrane Domains.
    Castello-Serrano I; Lorent JH; Ippolito R; Levental KR; Levental I
    J Phys Chem B; 2020 Jul; 124(28):5930-5939. PubMed ID: 32436385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TSTMP: target selection for structural genomics of human transmembrane proteins.
    Varga J; Dobson L; Reményi I; Tusnády GE
    Nucleic Acids Res; 2017 Jan; 45(D1):D325-D330. PubMed ID: 27924015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membranome 2.0: database for proteome-wide profiling of bitopic proteins and their dimers.
    Lomize AL; Hage JM; Pogozheva ID
    Bioinformatics; 2018 Mar; 34(6):1061-1062. PubMed ID: 29126305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HProteome-BSite: predicted binding sites and ligands in human 3D proteome.
    Sim J; Kwon S; Seok C
    Nucleic Acids Res; 2023 Jan; 51(D1):D403-D408. PubMed ID: 36243970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural biology of transmembrane domains: efficient production and characterization of transmembrane peptides by NMR.
    Hu J; Qin H; Li C; Sharma M; Cross TA; Gao FP
    Protein Sci; 2007 Oct; 16(10):2153-65. PubMed ID: 17893361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Covalently modified carboxyl side chains on cell surface leads to a novel method toward topology analysis of transmembrane proteins.
    Müller A; Langó T; Turiák L; Ács A; Várady G; Kucsma N; Drahos L; Tusnády GE
    Sci Rep; 2019 Oct; 9(1):15729. PubMed ID: 31673029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transmembrane protein alignment and fold recognition based on predicted topology.
    Wang H; He Z; Zhang C; Zhang L; Xu D
    PLoS One; 2013; 8(7):e69744. PubMed ID: 23894534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TOPDB: topology data bank of transmembrane proteins.
    Tusnády GE; Kalmár L; Simon I
    Nucleic Acids Res; 2008 Jan; 36(Database issue):D234-9. PubMed ID: 17921502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative analysis of membrane protein structure databases.
    Shimizu K; Cao W; Saad G; Shoji M; Terada T
    Biochim Biophys Acta Biomembr; 2018 May; 1860(5):1077-1091. PubMed ID: 29331638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.