These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36917620)

  • 1. Moiré-Tile Manipulation-Induced Friction Switch of Graphene on a Platinum Surface.
    Liu Z; Vilhena JG; Hinaut A; Scherb S; Luo F; Zhang J; Glatzel T; Gnecco E; Meyer E
    Nano Lett; 2023 May; 23(10):4693-4697. PubMed ID: 36917620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissipation Mechanisms and Superlubricity in Solid Lubrication by Wet-Transferred Solution-Processed Graphene Flakes: Implications for Micro Electromechanical Devices.
    Buzio R; Gerbi A; Bernini C; Repetto L; Silva A; Vanossi A
    ACS Appl Nano Mater; 2023 Jul; 6(13):11443-11454. PubMed ID: 37469503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Velocity Dependence of Moiré Friction.
    Song Y; Gao X; Hinaut A; Scherb S; Huang S; Glatzel T; Hod O; Urbakh M; Meyer E
    Nano Lett; 2022 Dec; 22(23):9529-9536. PubMed ID: 36449068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strain Engineering Modulates Graphene Interlayer Friction by Moiré Pattern Evolution.
    Wang K; Qu C; Wang J; Ouyang W; Ma M; Zheng Q
    ACS Appl Mater Interfaces; 2019 Oct; 11(39):36169-36176. PubMed ID: 31486630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deformation Coupled Moiré Mapping of Superlubricity in Graphene.
    Bai H; Zou G; Bao H; Li S; Ma F; Gao H
    ACS Nano; 2023 Jul; 17(13):12594-12602. PubMed ID: 37338168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sliding Friction and Superlubricity of Colloidal AFM Probes Coated by Tribo-Induced Graphitic Transfer Layers.
    Buzio R; Gerbi A; Bernini C; Repetto L; Vanossi A
    Langmuir; 2022 Oct; 38(41):12570-12580. PubMed ID: 36190908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sliding friction of graphene/hexagonal -boron nitride heterojunctions: a route to robust superlubricity.
    Mandelli D; Leven I; Hod O; Urbakh M
    Sci Rep; 2017 Sep; 7(1):10851. PubMed ID: 28883489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macroscale Superlubricity on Nanoscale Graphene Moiré Structure-Assembled Surface via Counterface Hydrogen Modulation.
    Wang Y; Yang X; Liang H; Zhao J; Zhang J
    Adv Sci (Weinh); 2024 May; 11(19):e2309701. PubMed ID: 38483889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Interlayer Bonding on Superlubric Sliding of Graphene Contacts: A Machine-Learning Potential Study.
    Ying P; Natan A; Hod O; Urbakh M
    ACS Nano; 2024 Apr; 18(14):10133-10141. PubMed ID: 38546136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superlubricity Enabled by Pressure-Induced Friction Collapse.
    Sun J; Zhang Y; Lu Z; Li Q; Xue Q; Du S; Pu J; Wang L
    J Phys Chem Lett; 2018 May; 9(10):2554-2559. PubMed ID: 29714483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generalized Scaling Law of Structural Superlubricity.
    Wang J; Cao W; Song Y; Qu C; Zheng Q; Ma M
    Nano Lett; 2019 Nov; 19(11):7735-7741. PubMed ID: 31646868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Limitations of Structural Superlubricity: Chemical Bonds versus Contact Size.
    Dietzel D; Brndiar J; Štich I; Schirmeisen A
    ACS Nano; 2017 Aug; 11(8):7642-7647. PubMed ID: 28715171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Twisting Dynamics of Large Lattice-Mismatch van der Waals Heterostructures.
    Liao M; Silva A; Du L; Nicolini P; Claerbout VEP; Kramer D; Yang R; Shi D; Polcar T; Zhang G
    ACS Appl Mater Interfaces; 2023 Apr; 15(15):19616-19623. PubMed ID: 37023057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stick-Slip Dynamics of Moiré Superstructures in Polycrystalline 2D Material Interfaces.
    Gao X; Urbakh M; Hod O
    Phys Rev Lett; 2022 Dec; 129(27):276101. PubMed ID: 36638291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superlubric polycrystalline graphene interfaces.
    Gao X; Ouyang W; Urbakh M; Hod O
    Nat Commun; 2021 Sep; 12(1):5694. PubMed ID: 34584082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin of the moiré superlattice scale lateral force modulation of graphene on a transition metal substrate.
    Gao L; Chen X; Ma Y; Yan Y; Ma T; Su Y; Qiao L
    Nanoscale; 2018 Jun; 10(22):10576-10583. PubMed ID: 29808195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Symmetry Breaking and Anomalous Conductivity in a Double-Moiré Superlattice.
    Li Y; Xue M; Fan H; Gao CF; Shi Y; Liu Y; Watanabe K; Tanguchi T; Zhao Y; Wu F; Wang X; Shi Y; Guo W; Zhang Z; Fei Z; Li J
    Nano Lett; 2022 Aug; 22(15):6215-6222. PubMed ID: 35852915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust superlubricity by strain engineering.
    Wang K; Ouyang W; Cao W; Ma M; Zheng Q
    Nanoscale; 2019 Jan; 11(5):2186-2193. PubMed ID: 30671572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning friction to a superlubric state via in-plane straining.
    Zhang S; Hou Y; Li S; Liu L; Zhang Z; Feng XQ; Li Q
    Proc Natl Acad Sci U S A; 2019 Dec; 116(49):24452-24456. PubMed ID: 31659028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Atomistic Insight into Moiré Reconstruction in Twisted Bilayer Graphene beyond the Magic Angle.
    Dey A; Chowdhury SA; Peña T; Singh S; Wu SM; Askari H
    ACS Appl Eng Mater; 2023 Mar; 1(3):970-982. PubMed ID: 37008886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.