These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36917620)

  • 21. Dual-Scale Stick-Slip Friction on Graphene/h-BN Moiré Superlattice Structure.
    Zhang S; Yao Q; Chen L; Jiang C; Ma T; Wang H; Feng XQ; Li Q
    Phys Rev Lett; 2022 Jun; 128(22):226101. PubMed ID: 35714257
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Robust ultra-low-friction state of graphene via moiré superlattice confinement.
    Zheng X; Gao L; Yao Q; Li Q; Zhang M; Xie X; Qiao S; Wang G; Ma T; Di Z; Luo J; Wang X
    Nat Commun; 2016 Oct; 7():13204. PubMed ID: 27759019
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relation between interfacial shear and friction force in 2D materials.
    Rejhon M; Lavini F; Khosravi A; Shestopalov M; Kunc J; Tosatti E; Riedo E
    Nat Nanotechnol; 2022 Dec; 17(12):1280-1287. PubMed ID: 36316542
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Developing Graphene-Based Moiré Heterostructures for Twistronics.
    Liu M; Wang L; Yu G
    Adv Sci (Weinh); 2022 Jan; 9(1):e2103170. PubMed ID: 34723434
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Attraction induced frictionless sliding of rare gas monolayer on metallic surfaces: an efficient strategy for superlubricity.
    Sun J; Zhang Y; Lu Z; Xue Q; Wang L
    Phys Chem Chem Phys; 2017 May; 19(18):11026-11031. PubMed ID: 28397884
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Superlubric sliding of graphene nanoflakes on graphene.
    Feng X; Kwon S; Park JY; Salmeron M
    ACS Nano; 2013 Feb; 7(2):1718-24. PubMed ID: 23327483
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Robust Superlubricity and Moiré Lattice's Size Dependence on Friction between Graphdiyne Layers.
    Ruan X; Shi J; Wang X; Wang WY; Fan X; Zhou F
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40901-40908. PubMed ID: 34404203
    [TBL] [Abstract][Full Text] [Related]  

  • 28. One-Dimensional Strain Solitons Manipulated Superlubricity on Graphene Interface.
    Bai H; Bao H; Li Y; Xu H; Li S; Ma F
    J Phys Chem Lett; 2022 Aug; 13(31):7261-7268. PubMed ID: 35914178
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Graphene-Graphene Interactions: Friction, Superlubricity, and Exfoliation.
    Sinclair RC; Suter JL; Coveney PV
    Adv Mater; 2018 Mar; 30(13):e1705791. PubMed ID: 29436032
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Negative Friction Coefficients in Superlubric Graphite-Hexagonal Boron Nitride Heterojunctions.
    Mandelli D; Ouyang W; Hod O; Urbakh M
    Phys Rev Lett; 2019 Feb; 122(7):076102. PubMed ID: 30848642
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synergistic Effect of Carbon Micro/Nano-Fillers and Surface Patterning on the Superlubric Performance of 3D-Printed Structures.
    Gkougkousi K; Karantzalis AE; Nikolakopoulos PG; Dassios KG
    Materials (Basel); 2024 Mar; 17(5):. PubMed ID: 38473685
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extracting the Strain Matrix and Twist Angle from the Moiré Superlattice in van der Waals Heterostructures.
    Halbertal D; Shabani S; Passupathy AN; Basov DN
    ACS Nano; 2022 Jan; 16(1):1471-1476. PubMed ID: 34982529
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of the Pinning Points in epitaxial Graphene Moiré Superstructures on the Pt(111) Surface.
    Martínez JI; Merino P; Pinardi AL; Gonzalo OI; López MF; Méndez J; Martín-Gago JA
    Sci Rep; 2016 Feb; 6():20354. PubMed ID: 26852920
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Moiré Hyperbolic Metasurfaces.
    Hu G; Krasnok A; Mazor Y; Qiu CW; Alù A
    Nano Lett; 2020 May; 20(5):3217-3224. PubMed ID: 32298129
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Complex Strain Scapes in Reconstructed Transition-Metal Dichalcogenide Moiré Superlattices.
    Rodríguez Á; Varillas J; Haider G; Kalbáč M; Frank O
    ACS Nano; 2023 Apr; 17(8):7787-7796. PubMed ID: 37022987
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Operational and environmental conditions regulate the frictional behavior of two-dimensional materials.
    Tran-Khac BC; Kim HJ; DelRio FW; Chung KH
    Appl Surf Sci; 2019; 483():. PubMed ID: 31555019
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Friction fluctuations of gold nanoparticles in the superlubric regime.
    Dietzel D; Wijn AS; Vorholzer M; Schirmeisen A
    Nanotechnology; 2018 Apr; 29(15):155702. PubMed ID: 29460852
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Load-Dependent Friction Hysteresis on Graphene.
    Ye Z; Egberts P; Han GH; Johnson AT; Carpick RW; Martini A
    ACS Nano; 2016 May; 10(5):5161-8. PubMed ID: 27110836
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The breakdown of superlubricity by driving-induced commensurate dislocations.
    Benassi A; Ma M; Urbakh M; Vanossi A
    Sci Rep; 2015 Nov; 5():16134. PubMed ID: 26553308
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Strong interlayer coupling and stable topological flat bands in twisted bilayer photonic Moiré superlattices.
    Yi CH; Park HC; Park MJ
    Light Sci Appl; 2022 Oct; 11(1):289. PubMed ID: 36202788
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.