BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36917660)

  • 1. Monitoring the compaction of single DNA molecules in
    Sun M; Amiri H; Tong AB; Shintomi K; Hirano T; Bustamante C; Heald R
    Proc Natl Acad Sci U S A; 2023 Mar; 120(12):e2221309120. PubMed ID: 36917660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linker histone H1.8 inhibits chromatin binding of condensins and DNA topoisomerase II to tune chromosome length and individualization.
    Choppakatla P; Dekker B; Cutts EE; Vannini A; Dekker J; Funabiki H
    Elife; 2021 Aug; 10():. PubMed ID: 34406118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The TFIIH complex is required to establish and maintain mitotic chromosome structure.
    Haase J; Chen R; Parker WM; Bonner MK; Jenkins LM; Kelly AE
    Elife; 2022 Mar; 11():. PubMed ID: 35293859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitotic post-translational modifications of histones promote chromatin compaction
    Zhiteneva A; Bonfiglio JJ; Makarov A; Colby T; Vagnarelli P; Schirmer EC; Matic I; Earnshaw WC
    Open Biol; 2017 Sep; 7(9):. PubMed ID: 28903997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The long and the short of it: linker histone H1 is required for metaphase chromosome compaction.
    Maresca TJ; Heald R
    Cell Cycle; 2006 Mar; 5(6):589-91. PubMed ID: 16582611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histone H1 compacts DNA under force and during chromatin assembly.
    Xiao B; Freedman BS; Miller KE; Heald R; Marko JF
    Mol Biol Cell; 2012 Dec; 23(24):4864-71. PubMed ID: 23097493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional comparison of H1 histones in Xenopus reveals isoform-specific regulation by Cdk1 and RanGTP.
    Freedman BS; Heald R
    Curr Biol; 2010 Jun; 20(11):1048-52. PubMed ID: 20471264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histone H1 is essential for mitotic chromosome architecture and segregation in Xenopus laevis egg extracts.
    Maresca TJ; Freedman BS; Heald R
    J Cell Biol; 2005 Jun; 169(6):859-69. PubMed ID: 15967810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromosome condensation in Xenopus mitotic extracts without histone H1.
    Ohsumi K; Katagiri C; Kishimoto T
    Science; 1993 Dec; 262(5142):2033-5. PubMed ID: 8266099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cohesin release is required for sister chromatid resolution, but not for condensin-mediated compaction, at the onset of mitosis.
    Losada A; Hirano M; Hirano T
    Genes Dev; 2002 Dec; 16(23):3004-16. PubMed ID: 12464631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the role of Aurora B on the chromosomal targeting of condensin I.
    Takemoto A; Murayama A; Katano M; Urano T; Furukawa K; Yokoyama S; Yanagisawa J; Hanaoka F; Kimura K
    Nucleic Acids Res; 2007; 35(7):2403-12. PubMed ID: 17392339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The histone chaperone Asf1 is dispensable for direct de novo histone deposition in Xenopus egg extracts.
    Ray-Gallet D; Quivy JP; Silljé HW; Nigg EA; Almouzni G
    Chromosoma; 2007 Oct; 116(5):487-96. PubMed ID: 17576589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutamylation of Nap1 modulates histone H1 dynamics and chromosome condensation in Xenopus.
    Miller KE; Heald R
    J Cell Biol; 2015 Apr; 209(2):211-20. PubMed ID: 25897082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RuvB-like ATPases function in chromatin decondensation at the end of mitosis.
    Magalska A; Schellhaus AK; Moreno-Andrés D; Zanini F; Schooley A; Sachdev R; Schwarz H; Madlung J; Antonin W
    Dev Cell; 2014 Nov; 31(3):305-318. PubMed ID: 25443297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The adenomatous polyposis coli protein contributes to normal compaction of mitotic chromatin.
    Dikovskaya D; Khoudoli G; Newton IP; Chadha GS; Klotz D; Visvanathan A; Lamond A; Swedlow JR; Näthke IS
    PLoS One; 2012; 7(6):e38102. PubMed ID: 22719865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axial contraction and short-range compaction of chromatin synergistically promote mitotic chromosome condensation.
    Kruitwagen T; Denoth-Lippuner A; Wilkins BJ; Neumann H; Barral Y
    Elife; 2015 Nov; 4():e1039. PubMed ID: 26615018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitotic chromosome assembly despite nucleosome depletion in
    Shintomi K; Inoue F; Watanabe H; Ohsumi K; Ohsugi M; Hirano T
    Science; 2017 Jun; 356(6344):1284-1287. PubMed ID: 28522692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model for chromosome condensation based on the interplay between condensin and topoisomerase II.
    Baxter J; Aragón L
    Trends Genet; 2012 Mar; 28(3):110-7. PubMed ID: 22236810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromosome disentanglement driven via optimal compaction of loop-extruded brush structures.
    Brahmachari S; Marko JF
    Proc Natl Acad Sci U S A; 2019 Dec; 116(50):24956-24965. PubMed ID: 31757850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Condensin controls mitotic chromosome stiffness and stability without forming a structurally contiguous scaffold.
    Sun M; Biggs R; Hornick J; Marko JF
    Chromosome Res; 2018 Dec; 26(4):277-295. PubMed ID: 30143891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.