BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 36917682)

  • 1. Wild Silkworm Cocoon Waste Conversion into Tough Regenerated Silk Fibers by Solution Spinning.
    Yazawa K; Iwata S; Gotoh Y
    Biomacromolecules; 2023 Apr; 24(4):1700-1708. PubMed ID: 36917682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous Wet Spinning of Regenerated Silk Fibers from Spinning Dopes Containing 4% Fibroin Protein.
    Wöltje M; Isenberg KL; Cherif C; Aibibu D
    Int J Mol Sci; 2023 Aug; 24(17):. PubMed ID: 37686298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical properties of regenerated Bombyx mori silk fibers and recombinant silk fibers produced by transgenic silkworms.
    Zhu Z; Kikuchi Y; Kojima K; Tamura T; Kuwabara N; Nakamura T; Asakura T
    J Biomater Sci Polym Ed; 2010; 21(3):395-411. PubMed ID: 20178693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Characteristics and Properties of Cocoon and Regenerated Silk Fibroin from Different Silkworm Strains.
    Kim YJ; Kim SW; Kim KY; Ki CS; Um IC
    Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emergence of supercontraction in regenerated silkworm (Bombyx mori) silk fibers.
    Pérez-Rigueiro J; Madurga R; Gañán-Calvo AM; Elices M; Guinea GV; Tasei Y; Nishimura A; Matsuda H; Asakura T
    Sci Rep; 2019 Feb; 9(1):2398. PubMed ID: 30787337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical properties and structure of silkworm cocoons: a comparative study of Bombyx mori, Antheraea assamensis, Antheraea pernyi and Antheraea mylitta silkworm cocoons.
    Zhang J; Kaur J; Rajkhowa R; Li JL; Liu XY; Wang XG
    Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3206-13. PubMed ID: 23706202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polymorphic regenerated silk fibers assembled through bioinspired spinning.
    Ling S; Qin Z; Li C; Huang W; Kaplan DL; Buehler MJ
    Nat Commun; 2017 Nov; 8(1):1387. PubMed ID: 29123097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supramolecular organization of regenerated silkworm silk fibers.
    Pérez-Rigueiro J; Biancotto L; Corsini P; Marsano E; Elices M; Plaza GR; Guinea GV
    Int J Biol Macromol; 2009 Mar; 44(2):195-202. PubMed ID: 19133291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toughening Wet-Spun Silk Fibers by Silk Nanofiber Templating.
    Yao Y; Allardyce BJ; Rajkhowa R; Hegh D; Qin S; Usman KAS; Mota-Santiago P; Zhang J; Lynch P; Wang X; Kaplan DL; Razal JM
    Macromol Rapid Commun; 2022 Apr; 43(7):e2100891. PubMed ID: 34939252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Situ Mineralizing Spinning of Strong and Tough Silk Fibers for Optical Waveguides.
    Zhang Y; Lu H; Zhang M; Hou Z; Li S; Wang H; Wu XE; Zhang Y
    ACS Nano; 2023 Mar; 17(6):5905-5912. PubMed ID: 36892421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tough silk fibers prepared in air using a biomimetic microfluidic chip.
    Luo J; Zhang L; Peng Q; Sun M; Zhang Y; Shao H; Hu X
    Int J Biol Macromol; 2014 May; 66():319-24. PubMed ID: 24613677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the Tensile Properties of Wet Spun Silk Fibers Using Rapid Bayesian Algorithm.
    Yao Y; Allardyce BJ; Rajkhowa R; Hegh D; Sutti A; Subianto S; Gupta S; Rana S; Greenhill S; Venkatesh S; Wang X; Razal JM
    ACS Biomater Sci Eng; 2020 May; 6(5):3197-3207. PubMed ID: 33463267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of different Bombyx mori silkworm varieties on the structural characteristics and properties of silk.
    Chung da E; Kim HH; Kim MK; Lee KH; Park YH; Um IC
    Int J Biol Macromol; 2015 Aug; 79():943-51. PubMed ID: 26072984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel method for silkworm cocoons self-degumming and its effect on silk fibers.
    Wang R; Wang Y; Song J; Tian C; Jing X; Zhao P; Xia Q
    J Adv Res; 2023 Nov; 53():87-98. PubMed ID: 36572337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial ligament made from silk protein/Laponite hybrid fibers.
    Dong Q; Cai J; Wang H; Chen S; Liu Y; Yao J; Shao Z; Chen X
    Acta Biomater; 2020 Apr; 106():102-113. PubMed ID: 32014583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous, Aligned, and Biomimetic Fibers of Regenerated Silk Fibroin Produced by Solution Blow Spinning.
    Magaz A; Roberts AD; Faraji S; Nascimento TRL; Medeiros ES; Zhang W; Greenhalgh RD; Mautner A; Li X; Blaker JJ
    Biomacromolecules; 2018 Dec; 19(12):4542-4553. PubMed ID: 30387602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic Dry-spinning and Characterization of Regenerated Silk Fibroin Fibers.
    Peng Q; Shao H; Hu X; Zhang Y
    J Vis Exp; 2017 Sep; (127):. PubMed ID: 28892028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dry-Spinning of Artificial Spider Silk Ribbons From Regenerated Natural Spidroin in an Organic Medium.
    Wang MY; Zhang JP; Chen SL; Qi B; Yao XY; Zhang XH; Li YT; Yang ZH
    Macromol Rapid Commun; 2023 Jun; 44(12):e2300024. PubMed ID: 37078381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanically Reinforced Silkworm Silk Fiber by Hot Stretching.
    Lu H; Xia K; Jian M; Liang X; Yin Z; Zhang M; Wang H; Wang H; Li S; Zhang Y
    Research (Wash D C); 2022; 2022():9854063. PubMed ID: 35445199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eri silkworm spins mechanically robust silk fibers regardless of reeling speed.
    Yazawa K; Tatebayashi Y; Kajiura Z
    J Exp Biol; 2022 Feb; 225(3):. PubMed ID: 35037048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.