BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 36917705)

  • 1. Exploring the Knowledge Attained by Machine Learning on Ion Transport across Polyamide Membranes Using Explainable Artificial Intelligence.
    Jeong N; Epsztein R; Wang R; Park S; Lin S; Tong T
    Environ Sci Technol; 2023 Nov; 57(46):17851-17862. PubMed ID: 36917705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting Micropollutant Removal by Reverse Osmosis and Nanofiltration Membranes: Is Machine Learning Viable?
    Jeong N; Chung TH; Tong T
    Environ Sci Technol; 2021 Aug; 55(16):11348-11359. PubMed ID: 34342439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding Rejection Mechanisms of Trace Organic Contaminants by Polyamide Membranes via Data-Knowledge Codriven Machine Learning.
    Wang H; Zeng J; Dai R; Wang Z
    Environ Sci Technol; 2024 Apr; 58(13):5878-5888. PubMed ID: 38498471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes.
    Yüksel S; Kabay N; Yüksel M
    J Hazard Mater; 2013 Dec; 263 Pt 2():307-10. PubMed ID: 23731784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applying Transition-State Theory to Explore Transport and Selectivity in Salt-Rejecting Membranes: A Critical Review.
    Shefer I; Lopez K; Straub AP; Epsztein R
    Environ Sci Technol; 2022 Jun; 56(12):7467-7483. PubMed ID: 35549171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of organic contaminant rejection by nanofiltration and reverse osmosis membranes using interpretable machine learning models.
    Zhu T; Zhang Y; Tao C; Chen W; Cheng H
    Sci Total Environ; 2023 Jan; 857(Pt 1):159348. PubMed ID: 36228787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Significance of Co-ion Partitioning in Salt Transport through Polyamide Reverse Osmosis Membranes.
    Wang L; Cao T; Pataroque KE; Kaneda M; Biesheuvel PM; Elimelech M
    Environ Sci Technol; 2023 Mar; 57(9):3930-3939. PubMed ID: 36815574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of water matrix on the rejection of neutral pharmaceutically active compound by thin-film composite nanofiltration and reverse osmosis membranes.
    Shah IA; Ali S; Yang Z; Ihsanullah I; Huang H
    Chemosphere; 2022 Sep; 303(Pt 3):135211. PubMed ID: 35660049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and effect of biofouling on polyamide reverse osmosis and nanofiltration membrane surfaces.
    Khan MM; Stewart PS; Moll DJ; Mickols WE; Nelson SE; Camper AK
    Biofouling; 2011 Feb; 27(2):173-83. PubMed ID: 21253926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Swelling and morphology of the skin layer of polyamide composite membranes: an atomic force microscopy study.
    Freger V
    Environ Sci Technol; 2004 Jun; 38(11):3168-75. PubMed ID: 15224751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Solute Molecular Diameter on Permeability-Selectivity Tradeoff of Thin-Film Composite Polyamide Membranes in Aqueous Separations.
    Chen X; Boo C; Yip NY
    Water Res; 2021 Aug; 201():117311. PubMed ID: 34192614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does Surface Roughness Necessarily Increase the Fouling Propensity of Polyamide Reverse Osmosis Membranes by Humic Acid?
    Gan Q; Wu C; Long L; Peng LE; Yang Z; Guo H; Tang CY
    Environ Sci Technol; 2023 Feb; 57(6):2548-2556. PubMed ID: 36719958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of water matrices on removal of veterinary pharmaceuticals by nanofiltration and reverse osmosis membranes.
    Dolar D; Vuković A; Asperger D; Kosutić K
    J Environ Sci (China); 2011; 23(8):1299-307. PubMed ID: 22128537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong improvement of reverse osmosis polyamide membrane performance by addition of ZIF-8 nanoparticles: Effect of particle size and dispersion in selective layer.
    Wang F; Zheng T; Xiong R; Wang P; Ma J
    Chemosphere; 2019 Oct; 233():524-531. PubMed ID: 31185336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tailoring the structure of thin film nanocomposite membranes to achieve seawater RO membrane performance.
    Lind ML; Eumine Suk D; Nguyen TV; Hoek EM
    Environ Sci Technol; 2010 Nov; 44(21):8230-5. PubMed ID: 20942398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in physicochemical and transport properties of a reverse osmosis membrane exposed to chloraminated seawater.
    Valentino L; Renkens T; Maugin T; Croué JP; Mariñas BJ
    Environ Sci Technol; 2015 Feb; 49(4):2301-9. PubMed ID: 25590510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation, anti-fouling, and chlorine resistance of the polyamide reverse osmosis membrane: From mechanisms to mitigation strategies.
    Liu C; Wang W; Yang B; Xiao K; Zhao H
    Water Res; 2021 May; 195():116976. PubMed ID: 33706215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enthalpic and Entropic Selectivity of Water and Small Ions in Polyamide Membranes.
    Shefer I; Peer-Haim O; Leifman O; Epsztein R
    Environ Sci Technol; 2021 Nov; 55(21):14863-14875. PubMed ID: 34677944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing the performance of various nanofiltration membranes in advanced oxidation-nanofiltration treatment of reverse osmosis concentrates.
    Li N; Wang X; Zhang H; Zhang Z; Ding J; Lu J
    Environ Sci Pollut Res Int; 2019 Jun; 26(17):17472-17481. PubMed ID: 31020525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Feed Water pH on the Partitioning of Alkali Metal Salts from Aqueous Phase into the Polyamide Active Layers of Reverse Osmosis Membranes.
    Wang J; Armstrong MD; Grzebyk K; Vickers R; Coronell O
    Environ Sci Technol; 2021 Mar; 55(5):3250-3259. PubMed ID: 33600153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.