These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 36918041)

  • 21. Curcumin regulates the differentiation of naïve CD4+T cells and activates IL-10 immune modulation against acute lung injury in mice.
    Chai YS; Chen YQ; Lin SH; Xie K; Wang CJ; Yang YZ; Xu F
    Biomed Pharmacother; 2020 May; 125():109946. PubMed ID: 32004976
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Macrophage Immunometabolism: Where Are We (Going)?
    Van den Bossche J; O'Neill LA; Menon D
    Trends Immunol; 2017 Jun; 38(6):395-406. PubMed ID: 28396078
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeting MALAT1 and miRNA-181a-5p for the intervention of acute lung injury/acute respiratory distress syndrome.
    Liu Y; Wang X; Li P; Zhao Y; Yang L; Yu W; Xie H
    Respir Med; 2020 Dec; 175():106210. PubMed ID: 33197806
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advances in the Regulation of Macrophage Polarization by Mesenchymal Stem Cells and Implications for ALI/ARDS Treatment.
    Liu C; Xiao K; Xie L
    Front Immunol; 2022; 13():928134. PubMed ID: 35880175
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surfactant therapy for acute lung injury and acute respiratory distress syndrome.
    Raghavendran K; Willson D; Notter RH
    Crit Care Clin; 2011 Jul; 27(3):525-59. PubMed ID: 21742216
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Targeting MALAT1 and miRNA-181a-5p for the intervention of acute lung injury/acute respiratory distress syndrome.
    Liu Y; Wang X; Li P; Zhao Y; Yang L; Yu W; Xie H
    Respir Res; 2021 Jan; 22(1):1. PubMed ID: 33407436
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective inhibition of JNK mitochondrial location is protective against seawater inhalation‑induced ALI/ARDS.
    Bo L; Li Y; Liu W; Jin F; Li C
    Mol Med Rep; 2021 Jul; 24(1):. PubMed ID: 34013361
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Complement as a vital nexus of the pathobiological connectome for acute respiratory distress syndrome: An emerging therapeutic target.
    Yang Z; Nicholson SE; Cancio TS; Cancio LC; Li Y
    Front Immunol; 2023; 14():1100461. PubMed ID: 37006238
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Progress in preclinical studies of macrophage autophagy in the regulation of ALI/ARDS.
    Liu C; Xiao K; Xie L
    Front Immunol; 2022; 13():922702. PubMed ID: 36059534
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Could Heme Oxygenase-1 Be a New Target for Therapeutic Intervention in Malaria-Associated Acute Lung Injury/Acute Respiratory Distress Syndrome?
    Pereira MLM; Marinho CRF; Epiphanio S
    Front Cell Infect Microbiol; 2018; 8():161. PubMed ID: 29868517
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extracellular vesicles in the pathogenesis and treatment of acute lung injury.
    Hu Q; Zhang S; Yang Y; Yao JQ; Tang WF; Lyon CJ; Hu TY; Wan MH
    Mil Med Res; 2022 Nov; 9(1):61. PubMed ID: 36316787
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Implication of mitochondrial ROS-NLRP3 inflammasome axis during two-hit mediated acute lung injury in mice.
    Puri G; Naura AS
    Free Radic Res; 2022 Jan; 56(1):1-16. PubMed ID: 35129032
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lower Oligomeric Form of Surfactant Protein D in Murine Acute Lung Injury Induces M1 Subtype Macrophages Through Calreticulin/p38 MAPK Signaling Pathway.
    Li D; Pan L; Zhang X; Jiang Z
    Front Immunol; 2021; 12():687506. PubMed ID: 34484184
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of the NLRP3 inflammasome and macrophage pyroptosis by the p38 MAPK signaling pathway in a mouse model of acute lung injury.
    Li D; Ren W; Jiang Z; Zhu L
    Mol Med Rep; 2018 Nov; 18(5):4399-4409. PubMed ID: 30152849
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of macrophages polarization in sepsis-induced acute lung injury.
    Wang Z; Wang Z
    Front Immunol; 2023; 14():1209438. PubMed ID: 37691951
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Role of Macrophages in the Pathogenesis of ALI/ARDS.
    Huang X; Xiu H; Zhang S; Zhang G
    Mediators Inflamm; 2018; 2018():1264913. PubMed ID: 29950923
    [TBL] [Abstract][Full Text] [Related]  

  • 37. LAIR-1 limits macrophage activation in acute inflammatory lung injury.
    Helou DG; Quach C; Hurrell BP; Li X; Li M; Akbari A; Shen S; Shafiei-Jahani P; Akbari O
    Mucosal Immunol; 2023 Dec; 16(6):788-800. PubMed ID: 37634572
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluorous-Tagged Peptide Nanoparticles Ameliorate Acute Lung Injury via Lysosomal Stabilization and Inflammation Inhibition in Pulmonary Macrophages.
    Wang K; Rong G; Gao Y; Wang M; Sun J; Sun H; Liao X; Wang Y; Li Q; Gao W; Cheng Y
    Small; 2022 Oct; 18(40):e2203432. PubMed ID: 36069247
    [TBL] [Abstract][Full Text] [Related]  

  • 39. How could we forget immunometabolism in SARS-CoV2 infection or COVID-19?
    Kumar V
    Int Rev Immunol; 2021; 40(1-2):72-107. PubMed ID: 33155525
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cryptotanshinone attenuates LPS-induced acute lung injury by regulating metabolic reprogramming of macrophage.
    Ye Z; Wang P; Feng G; Wang Q; Liu C; Lu J; Chen J; Liu P
    Front Med (Lausanne); 2022; 9():1075465. PubMed ID: 36714100
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.