BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 36918260)

  • 1. Potassium Channels in Parkinson's Disease: Potential Roles in Its Pathogenesis and Innovative Molecular Targets for Treatment.
    Chen X; Feng Y; Quinn RJ; Pountney DL; Richardson DR; Mellick GD; Ma L
    Pharmacol Rev; 2023 Jul; 75(4):758-788. PubMed ID: 36918260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potassium channels and their emerging role in parkinson's disease.
    Zhang L; Zheng Y; Xie J; Shi L
    Brain Res Bull; 2020 Jul; 160():1-7. PubMed ID: 32305406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Converging roles of ion channels, calcium, metabolic stress, and activity pattern of Substantia nigra dopaminergic neurons in health and Parkinson's disease.
    Duda J; Pötschke C; Liss B
    J Neurochem; 2016 Oct; 139 Suppl 1(Suppl Suppl 1):156-178. PubMed ID: 26865375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trib3 Is Elevated in Parkinson's Disease and Mediates Death in Parkinson's Disease Models.
    Aimé P; Sun X; Zareen N; Rao A; Berman Z; Volpicelli-Daley L; Bernd P; Crary JF; Levy OA; Greene LA
    J Neurosci; 2015 Jul; 35(30):10731-49. PubMed ID: 26224857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dopaminergic Neurons Exhibit an Age-Dependent Decline in Electrophysiological Parameters in the MitoPark Mouse Model of Parkinson's Disease.
    Branch SY; Chen C; Sharma R; Lechleiter JD; Li S; Beckstead MJ
    J Neurosci; 2016 Apr; 36(14):4026-37. PubMed ID: 27053209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cav1.3 channels control D2-autoreceptor responses via NCS-1 in substantia nigra dopamine neurons.
    Dragicevic E; Poetschke C; Duda J; Schlaudraff F; Lammel S; Schiemann J; Fauler M; Hetzel A; Watanabe M; Lujan R; Malenka RC; Striessnig J; Liss B
    Brain; 2014 Aug; 137(Pt 8):2287-302. PubMed ID: 24934288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TRPC Channels and Parkinson's Disease.
    Sukumaran P; Sun Y; Schaar A; Selvaraj S; Singh BB
    Adv Exp Med Biol; 2017; 976():85-94. PubMed ID: 28508315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potassium Channels: A Potential Therapeutic Target for Parkinson's Disease.
    Chen X; Xue B; Wang J; Liu H; Shi L; Xie J
    Neurosci Bull; 2018 Apr; 34(2):341-348. PubMed ID: 28884460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuroinflammation in Parkinson's Disease and its Treatment Opportunities.
    Çınar E; Tel BC; Şahin G
    Balkan Med J; 2022 Sep; 39(5):318-333. PubMed ID: 36036436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RGS Proteins as Critical Regulators of Motor Function and Their Implications in Parkinson's Disease.
    Ahlers-Dannen KE; Spicer MM; Fisher RA
    Mol Pharmacol; 2020 Dec; 98(6):730-738. PubMed ID: 32015009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Therapeutic potential of ATP-sensitive potassium channels in Parkinson's disease.
    Zhao S; Wang M; Ma Z
    Brain Res Bull; 2021 Apr; 169():1-7. PubMed ID: 33434622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Are ion channels potential therapeutic targets for Parkinson's disease?
    Daniel NH; Aravind A; Thakur P
    Neurotoxicology; 2021 Dec; 87():243-257. PubMed ID: 34699791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repulsive Guidance Molecule a (RGMa) Induces Neuropathological and Behavioral Changes That Closely Resemble Parkinson's Disease.
    Korecka JA; Moloney EB; Eggers R; Hobo B; Scheffer S; Ras-Verloop N; Pasterkamp RJ; Swaab DF; Smit AB; van Kesteren RE; Bossers K; Verhaagen J
    J Neurosci; 2017 Sep; 37(39):9361-9379. PubMed ID: 28842419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuroprotective and Therapeutic Strategies against Parkinson's Disease: Recent Perspectives.
    Sarkar S; Raymick J; Imam S
    Int J Mol Sci; 2016 Jun; 17(6):. PubMed ID: 27338353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion Channels and Metal Ions in Parkinson's Disease: Historical Perspective to the Current Scenario.
    Vaidya B; Padhy DS; Joshi HC; Sharma SS; Singh JN
    Methods Mol Biol; 2024; 2761():529-557. PubMed ID: 38427260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The interplay between neuroinflammatory pathways and Parkinson's disease.
    Eser P; Kocabicak E; Bekar A; Temel Y
    Exp Neurol; 2024 Feb; 372():114644. PubMed ID: 38061555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Targets for Parkinson's Disease: Addressing Different Therapeutic Paradigms and Conundrums.
    Rane P; Sarmah D; Bhute S; Kaur H; Goswami A; Kalia K; Borah A; Dave KR; Sharma N; Bhattacharya P
    ACS Chem Neurosci; 2019 Jan; 10(1):44-57. PubMed ID: 29957921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voltage-Gated Ca
    Ortner NJ
    Front Synaptic Neurosci; 2021; 13():636103. PubMed ID: 33716705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular S100B inhibits A-type voltage-gated potassium currents and increases L-type voltage-gated calcium channel activity in dopaminergic neurons.
    Bancroft EA; De La Mora M; Pandey G; Zarate SM; Srinivasan R
    Glia; 2022 Dec; 70(12):2330-2347. PubMed ID: 35916350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein kinase Cδ upregulation in microglia drives neuroinflammatory responses and dopaminergic neurodegeneration in experimental models of Parkinson's disease.
    Gordon R; Singh N; Lawana V; Ghosh A; Harischandra DS; Jin H; Hogan C; Sarkar S; Rokad D; Panicker N; Anantharam V; Kanthasamy AG; Kanthasamy A
    Neurobiol Dis; 2016 Sep; 93():96-114. PubMed ID: 27151770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.