These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 36918345)
1. In vitro efficacy of non-surgical and surgical implant surface decontamination methods in three different defect configurations in the presence or absence of a suprastructure. Korello K; Eickholz P; Zuhr O; Ratka C; Petsos H Clin Implant Dent Relat Res; 2023 Jun; 25(3):549-563. PubMed ID: 36918345 [TBL] [Abstract][Full Text] [Related]
2. In Vitro Efficacy of Three Different Nonsurgical Implant Surface Decontamination Methods in Three Different Defect Configurations. Iatrou P; Chamilos C; Nickles K; Ratka C; Eickholz P; Petsos H Int J Oral Maxillofac Implants; 2021; 36(2):271-280. PubMed ID: 33909716 [TBL] [Abstract][Full Text] [Related]
3. In vitro efficacy of three different implant surface decontamination methods in three different defect configurations. Keim D; Nickles K; Dannewitz B; Ratka C; Eickholz P; Petsos H Clin Oral Implants Res; 2019 Jun; 30(6):550-558. PubMed ID: 31009116 [TBL] [Abstract][Full Text] [Related]
4. In vitro surgical and non-surgical air-polishing efficacy for implant surface decontamination in three different defect configurations. Tuchscheerer V; Eickholz P; Dannewitz B; Ratka C; Zuhr O; Petsos H Clin Oral Investig; 2021 Apr; 25(4):1743-1754. PubMed ID: 32813077 [TBL] [Abstract][Full Text] [Related]
5. Comparison of decontamination efficacy of two electrolyte cleaning methods to diode laser, plasma, and air-abrasive devices. Zipprich H; Weigl P; Di Gianfilippo R; Steigmann L; Henrich D; Wang HL; Schlee M; Ratka C Clin Oral Investig; 2022 Jun; 26(6):4549-4558. PubMed ID: 35322316 [TBL] [Abstract][Full Text] [Related]
6. In vitro cleaning potential of three different implant debridement methods. Sahrmann P; Ronay V; Hofer D; Attin T; Jung RE; Schmidlin PR Clin Oral Implants Res; 2015 Mar; 26(3):314-9. PubMed ID: 24373056 [TBL] [Abstract][Full Text] [Related]
7. Cleaning potential of glycine air-flow application in an in vitro peri-implantitis model. Sahrmann P; Ronay V; Sener B; Jung RE; Attin T; Schmidlin PR Clin Oral Implants Res; 2013 Jun; 24(6):666-70. PubMed ID: 22409152 [TBL] [Abstract][Full Text] [Related]
8. In vitro cleaning potential of three implant debridement methods. Simulation of the non-surgical approach. Ronay V; Merlini A; Attin T; Schmidlin PR; Sahrmann P Clin Oral Implants Res; 2017 Feb; 28(2):151-155. PubMed ID: 26799360 [TBL] [Abstract][Full Text] [Related]
9. Effects of an amino acid buffered hypochlorite solution as an adjunctive to air-powder abrasion in open-flap surface decontamination of implants failed for peri-implantitis: an ex vivo randomized clinical trial. La Monaca G; Pranno N; Mengoni F; Puggioni G; Polimeni A; Annibali S; Cristalli MP Clin Oral Investig; 2023 Feb; 27(2):827-835. PubMed ID: 35802191 [TBL] [Abstract][Full Text] [Related]
10. Anatomical three-dimensional model with peri-implant defect for in vitro assessment of dental implant decontamination. Khan SN; Koldsland OC; Tiainen H; Hjortsjö C Clin Exp Dent Res; 2024 Feb; 10(1):e841. PubMed ID: 38345509 [TBL] [Abstract][Full Text] [Related]
11. Cold atmospheric plasma coupled with air abrasion in liquid medium for the treatment of peri-implantitis model grown with a complex human biofilm: an in vitro study. Hui WL; Perrotti V; Piattelli A; Ostrikov KK; Fang Z; Quaranta A Clin Oral Investig; 2021 Dec; 25(12):6633-6642. PubMed ID: 33893556 [TBL] [Abstract][Full Text] [Related]
12. Cleaning potential of different air abrasive powders and their impact on implant surface roughness. Matsubara VH; Leong BW; Leong MJL; Lawrence Z; Becker T; Quaranta A Clin Implant Dent Relat Res; 2020 Feb; 22(1):96-104. PubMed ID: 31837107 [TBL] [Abstract][Full Text] [Related]
13. Comparison of the effects of air-powder abrasion, chemical decontamination, or their combination in open-flap surface decontamination of implants failed for peri-implantitis: an ex vivo study. Pranno N; Cristalli MP; Mengoni F; Sauzullo I; Annibali S; Polimeni A; La Monaca G Clin Oral Investig; 2021 May; 25(5):2667-2676. PubMed ID: 32975703 [TBL] [Abstract][Full Text] [Related]
14. Cleaning and modification of intraorally contaminated titanium discs with calcium phosphate powder abrasive treatment. Tastepe CS; Liu Y; Visscher CM; Wismeijer D Clin Oral Implants Res; 2013 Nov; 24(11):1238-46. PubMed ID: 22882522 [TBL] [Abstract][Full Text] [Related]
15. The efficacy of different implant surface decontamination methods using spectrophotometric analysis: an Giffi R; Pietropaoli D; Mancini L; Tarallo F; Sahrmann P; Marchetti E J Periodontal Implant Sci; 2023 Aug; 53(4):295-305. PubMed ID: 36731864 [TBL] [Abstract][Full Text] [Related]
16. Air powder abrasive treatment as an implant surface cleaning method: a literature review. Tastepe CS; van Waas R; Liu Y; Wismeijer D Int J Oral Maxillofac Implants; 2012; 27(6):1461-73. PubMed ID: 23189298 [TBL] [Abstract][Full Text] [Related]
18. Nonsurgical cleaning potential of deep-threaded implants and titanium particle release: A novel in vitro tissue model. Fischer KR; Büchel J; Gubler A; Liu CC; Sahrmann P; Schmidlin PR Clin Oral Implants Res; 2023 May; 34(5):416-425. PubMed ID: 36757141 [TBL] [Abstract][Full Text] [Related]
19. Mechanical, chemical and laser treatments of the implant surface in the presence of marginal bone loss around implants. Meyle J Eur J Oral Implantol; 2012; 5 Suppl():S71-81. PubMed ID: 22834396 [TBL] [Abstract][Full Text] [Related]
20. Cleaning effects of decontamination methods on clinically failed TiUnite implants and their impacts on surface roughness and chemistry: An in vitro pilot study. Qian Y; Tong Z; Cai B; Zhu W; Si M Int J Oral Implantol (Berl); 2022 May; 15(2):149-165. PubMed ID: 35546724 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]