These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36918445)

  • 1. Niche differentiation in the light spectrum promotes coexistence of phytoplankton species: a spatial modelling approach.
    Heggerud CM; Lam KY; Wang H
    J Math Biol; 2023 Mar; 86(4):54. PubMed ID: 36918445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colourful coexistence of red and green picocyanobacteria in lakes and seas.
    Stomp M; Huisman J; Vörös L; Pick FR; Laamanen M; Haverkamp T; Stal LJ
    Ecol Lett; 2007 Apr; 10(4):290-8. PubMed ID: 17355568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable coexistence of equivalent nutrient competitors through niche differentiation in the light spectrum.
    Burson A; Stomp M; Mekkes L; Huisman J
    Ecology; 2019 Dec; 100(12):e02873. PubMed ID: 31463935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesoscale vortices and the paradox of the plankton.
    Bracco A; Provenzale A; Scheuring I
    Proc Biol Sci; 2000 Sep; 267(1454):1795-800. PubMed ID: 12233779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How do plankton species coexist in an apparently unstructured environment?
    Kléparski L; Beaugrand G; Kirby RR
    Biol Lett; 2022 Jul; 18(7):20220207. PubMed ID: 35855610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential resource use in filter-feeding marine invertebrates.
    Comerford B; Álvarez-Noriega M; Marshall D
    Oecologia; 2020 Nov; 194(3):505-513. PubMed ID: 33079267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sheldon spectrum and the plankton paradox: two sides of the same coin-a trait-based plankton size-spectrum model.
    Cuesta JA; Delius GW; Law R
    J Math Biol; 2018 Jan; 76(1-2):67-96. PubMed ID: 28547211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effects of Dynamical Rates on Species Coexistence in a Variable Environment: The Paradox of the Plankton Revisited.
    Li L; Chesson P
    Am Nat; 2016 Aug; 188(2):E46-58. PubMed ID: 27420794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competition drives clumpy species coexistence in estuarine phytoplankton.
    Segura AM; Kruk C; Calliari D; García-Rodriguez F; Conde D; Widdicombe CE; Fort H
    Sci Rep; 2013; 3():1037. PubMed ID: 23301158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competition for nutrients and light: testing advances in resource competition with a natural phytoplankton community.
    Burson A; Stomp M; Greenwell E; Grosse J; Huisman J
    Ecology; 2018 May; 99(5):1108-1118. PubMed ID: 29453803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competing effects of toxin-producing phytoplankton on overall plankton populations in the bay of Bengal.
    Roy S; Alam S; Chattopadhyay J
    Bull Math Biol; 2006 Nov; 68(8):2303-20. PubMed ID: 16804650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Dependence of the fish school movement and plankton special distribution on the phytoplankton growth rate].
    Tikhonova IA; Arino O; Ivanitskiĭ GR; Malchow H; Medvinskiĭ AB
    Biofizika; 2000; 45(2):352-9. PubMed ID: 10776551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Freshwater phytoplankton diversity: models, drivers and implications for ecosystem properties.
    Borics G; Abonyi A; Salmaso N; Ptacnik R
    Hydrobiologia; 2021; 848(1):53-75. PubMed ID: 32836348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intraguild predation enables coexistence of competing phytoplankton in a well-mixed water column.
    Moeller HV; Neubert MG; Johnson MD
    Ecology; 2019 Dec; 100(12):e02874. PubMed ID: 31463931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zooming in on size distribution patterns underlying species coexistence in Baltic Sea phytoplankton.
    Downing AS; Hajdu S; Hjerne O; Otto SA; Blenckner T; Larsson U; Winder M
    Ecol Lett; 2014 Oct; 17(10):1219-27. PubMed ID: 25040569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the role of spatial and stoichiometric heterogeneity in the top-down control in eutrophic planktonic ecosystems.
    Sandhu SK; Morozov A; Juan L
    J Theor Biol; 2020 Aug; 499():110311. PubMed ID: 32437709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Interdependence of plankton spatial distribution and plancton biomass temporal oscillations: mathematical simulation].
    Medvedinskiĭ AB; Tikhonova IA; Li BL; Malchow H
    Biofizika; 2003; 48(1):104-10. PubMed ID: 12630123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The competitive exclusion principle in stochastic environments.
    Hening A; Nguyen DH
    J Math Biol; 2020 Apr; 80(5):1323-1351. PubMed ID: 31919652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the sensitivity of plankton ecosystem models to the formulation of zooplankton grazing.
    Chenillat F; Rivière P; Ohman MD
    PLoS One; 2021; 16(5):e0252033. PubMed ID: 34033649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competition between phytoplankton and bacteria: exclusion and coexistence.
    Grognard F; Masci P; Benoît E; Bernard O
    J Math Biol; 2015 Apr; 70(5):959-1006. PubMed ID: 24748458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.