BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36918547)

  • 1. Viral inactivation by irradiation rays.
    Liu KK; Shan CX
    Light Sci Appl; 2023 Mar; 12(1):72. PubMed ID: 36918547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light People: Professor Dayong Jin.
    Zhang Y
    Light Sci Appl; 2021 Nov; 10(1):234. PubMed ID: 34836935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viral inactivation by light.
    Sadraeian M; Zhang L; Aavani F; Biazar E; Jin D
    eLight; 2022; 2(1):18. PubMed ID: 36187558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of ultraviolet light on mengovirus: formation of uracil dimers, instability and degradation of capsid, and covalent linkage of protein to viral RNA.
    Miller RL; Plagemann PG
    J Virol; 1974 Mar; 13(3):729-39. PubMed ID: 4132673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron beam inactivation of Tulane virus on fresh produce, and mechanism of inactivation of human norovirus surrogates by electron beam irradiation.
    Predmore A; Sanglay GC; DiCaprio E; Li J; Uribe RM; Lee K
    Int J Food Microbiol; 2015 Apr; 198():28-36. PubMed ID: 25590261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Principles of selective inactivation of viral genome. II. Influence of stirring and optical density of the layer to be irradiated upon UV-induced inactivation of viruses.
    Budowsky EI; Kostyuk GV; Kost AA; Savin FA
    Arch Virol; 1981; 68(3-4):249-56. PubMed ID: 7023417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionizing Radiation Technologies for Vaccine Development - A Mini Review.
    Bhatia SS; Pillai SD
    Front Immunol; 2022; 13():845514. PubMed ID: 35222438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inactivation of human norovirus and Tulane virus in simple media and fresh whole strawberries by ionizing radiation.
    DiCaprio E; Phantkankum N; Culbertson D; Ma Y; Hughes JH; Kingsley D; Uribe RM; Li J
    Int J Food Microbiol; 2016 Sep; 232():43-51. PubMed ID: 27240219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultraviolet-C irradiation for inactivation of viruses in foetal bovine serum.
    Vaidya V; Dhere R; Agnihotri S; Muley R; Patil S; Pawar A
    Vaccine; 2018 Jul; 36(29):4215-4221. PubMed ID: 29891350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Susceptibility of SARS-CoV-2 to UV irradiation.
    Heilingloh CS; Aufderhorst UW; Schipper L; Dittmer U; Witzke O; Yang D; Zheng X; Sutter K; Trilling M; Alt M; Steinmann E; Krawczyk A
    Am J Infect Control; 2020 Oct; 48(10):1273-1275. PubMed ID: 32763344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inactivation of tobacco mosaic virus using gamma irradiation and its potential modes of action.
    Jeong RD; Choi HS
    Acta Virol; 2017; 61(2):223-225. PubMed ID: 28523930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inactivation of RNA Viruses by Gamma Irradiation: A Study on Mitigating Factors.
    Hume AJ; Ames J; Rennick LJ; Duprex WP; Marzi A; Tonkiss J; Mühlberger E
    Viruses; 2016 Jul; 8(7):. PubMed ID: 27455307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiobiological inactivation of Epstein-Barr virus.
    Henderson E; Heston L; Grogan E; Miller G
    J Virol; 1978 Jan; 25(1):51-9. PubMed ID: 202757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Inactivation Methods on SARS-CoV-2 Virion Protein and Structure.
    Loveday EK; Hain KS; Kochetkova I; Hedges JF; Robison A; Snyder DT; Brumfield SK; Young MJ; Jutila MA; Chang CB; Taylor MP
    Viruses; 2021 Mar; 13(4):. PubMed ID: 33810401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of time and dose dependent gene expression and affected pathways in primary human fibroblasts after exposure to ionizing radiation.
    Brackmann LK; Poplawski A; Grandt CL; Schwarz H; Hankeln T; Rapp S; Zahnreich S; Galetzka D; Schmitt I; Grad C; Eckhard L; Mirsch J; Blettner M; Scholz-Kreisel P; Hess M; Binder H; Schmidberger H; Marron M
    Mol Med; 2020 Sep; 26(1):85. PubMed ID: 32907548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid inactivation of SARS-CoV-2 with deep-UV LED irradiation.
    Inagaki H; Saito A; Sugiyama H; Okabayashi T; Fujimoto S
    Emerg Microbes Infect; 2020 Dec; 9(1):1744-1747. PubMed ID: 32673522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. UV Inactivation of SARS-CoV-2 across the UVC Spectrum: KrCl* Excimer, Mercury-Vapor, and Light-Emitting-Diode (LED) Sources.
    Ma B; Gundy PM; Gerba CP; Sobsey MD; Linden KG
    Appl Environ Microbiol; 2021 Oct; 87(22):e0153221. PubMed ID: 34495736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative evaluation of SARS-CoV-2 inactivation using a deep ultraviolet light-emitting diode.
    Minamikawa T; Koma T; Suzuki A; Mizuno T; Nagamatsu K; Arimochi H; Tsuchiya K; Matsuoka K; Yasui T; Yasutomo K; Nomaguchi M
    Sci Rep; 2021 Mar; 11(1):5070. PubMed ID: 33658595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation of biohazards in healthcare wastewater by E-Beam and Gamma irradiation: a comparative study.
    Jebri S; Yahya M; Rahmani F; Amri I; Hamdi M; Hmaied F
    Environ Sci Pollut Res Int; 2022 Oct; 29(50):75575-75586. PubMed ID: 35657553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation of bacteriophages in water by means of non-ionizing (UV-253.7 nm) and ionizing (gamma) radiation: a comparative approach.
    Sommer R; Pribil W; Appelt S; Gehringer P; Eschweiler H; Leth H; Cabaj A; Haider T
    Water Res; 2001 Sep; 35(13):3109-16. PubMed ID: 11487107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.