These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 36918561)

  • 1. AlphaFlow: autonomous discovery and optimization of multi-step chemistry using a self-driven fluidic lab guided by reinforcement learning.
    Volk AA; Epps RW; Yonemoto DT; Masters BS; Castellano FN; Reyes KG; Abolhasani M
    Nat Commun; 2023 Mar; 14(1):1403. PubMed ID: 36918561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerated Development of Colloidal Nanomaterials Enabled by Modular Microfluidic Reactors: Toward Autonomous Robotic Experimentation.
    Volk AA; Epps RW; Abolhasani M
    Adv Mater; 2021 Jan; 33(4):e2004495. PubMed ID: 33289177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerated screening of colloidal nanocrystals using artificial neural network-assisted autonomous flow reactor technology.
    Vikram A; Brudnak K; Zahid A; Shim M; Kenis PJA
    Nanoscale; 2021 Oct; 13(40):17028-17039. PubMed ID: 34622262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerated AI development for autonomous materials synthesis in flow.
    Epps RW; Volk AA; Reyes KG; Abolhasani M
    Chem Sci; 2021 May; 12(17):6025-6036. PubMed ID: 34976336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A versatile non-fouling multi-step flow reactor platform: demonstration for partial oxidation synthesis of iron oxide nanoparticles.
    Besenhard MO; Pal S; Storozhuk L; Dawes S; Thanh NTK; Norfolk L; Staniland S; Gavriilidis A
    Lab Chip; 2022 Dec; 23(1):115-124. PubMed ID: 36454245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autonomous Multi-Step and Multi-Objective Optimization Facilitated by Real-Time Process Analytics.
    Sagmeister P; Ort FF; Jusner CE; Hebrault D; Tampone T; Buono FG; Williams JD; Kappe CO
    Adv Sci (Weinh); 2022 Apr; 9(10):e2105547. PubMed ID: 35106974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autonomous Chemical Experiments: Challenges and Perspectives on Establishing a Self-Driving Lab.
    Seifrid M; Pollice R; Aguilar-Granda A; Morgan Chan Z; Hotta K; Ser CT; Vestfrid J; Wu TC; Aspuru-Guzik A
    Acc Chem Res; 2022 Sep; 55(17):2454-2466. PubMed ID: 35948428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated microfluidic systems for DNA analysis.
    Njoroge SK; Chen HW; Witek MA; Soper SA
    Top Curr Chem; 2011; 304():203-60. PubMed ID: 21607848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-the-fly closed-loop materials discovery via Bayesian active learning.
    Kusne AG; Yu H; Wu C; Zhang H; Hattrick-Simpers J; DeCost B; Sarker S; Oses C; Toher C; Curtarolo S; Davydov AV; Agarwal R; Bendersky LA; Li M; Mehta A; Takeuchi I
    Nat Commun; 2020 Nov; 11(1):5966. PubMed ID: 33235197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow Chemistry: A Sustainable Voyage Through the Chemical Universe en Route to Smart Manufacturing.
    Volk AA; Campbell ZS; Ibrahim MYS; Bennett JA; Abolhasani M
    Annu Rev Chem Biomol Eng; 2022 Jun; 13():45-72. PubMed ID: 35259931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Evolution of Chemical High-Throughput Experimentation To Address Challenging Problems in Pharmaceutical Synthesis.
    Krska SW; DiRocco DA; Dreher SD; Shevlin M
    Acc Chem Res; 2017 Dec; 50(12):2976-2985. PubMed ID: 29172435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autonomous x-ray scattering.
    Yager KG; Majewski PW; Noack MM; Fukuto M
    Nanotechnology; 2023 May; 34(32):. PubMed ID: 37141868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated microfluidic platform for systematic studies of colloidal perovskite nanocrystals: towards continuous nano-manufacturing.
    Epps RW; Felton KC; Coley CW; Abolhasani M
    Lab Chip; 2017 Nov; 17(23):4040-4047. PubMed ID: 29063081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic Technology: Uncovering the Mechanisms of Nanocrystal Nucleation and Growth.
    Lignos I; Maceiczyk R; deMello AJ
    Acc Chem Res; 2017 May; 50(5):1248-1257. PubMed ID: 28467055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward autonomous design and synthesis of novel inorganic materials.
    Szymanski NJ; Zeng Y; Huo H; Bartel CJ; Kim H; Ceder G
    Mater Horiz; 2021 Aug; 8(8):2169-2198. PubMed ID: 34846423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data-Driven Design and Autonomous Experimentation in Soft and Biological Materials Engineering.
    Ferguson AL; Brown KA
    Annu Rev Chem Biomol Eng; 2022 Jun; 13():25-44. PubMed ID: 35236085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on whale optimization algorithm.
    Ashraf NM; Mostafa RR; Sakr RH; Rashad MZ
    PLoS One; 2021; 16(6):e0252754. PubMed ID: 34111168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autonomous robotic nanofabrication with reinforcement learning.
    Leinen P; Esders M; Schütt KT; Wagner C; Müller KR; Tautz FS
    Sci Adv; 2020 Sep; 6(36):. PubMed ID: 32917594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-Agent Reinforcement Learning for Traffic Flow Management of Autonomous Vehicles.
    Mushtaq A; Haq IU; Sarwar MA; Khan A; Khalil W; Mughal MA
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autonomous navigation of stratospheric balloons using reinforcement learning.
    Bellemare MG; Candido S; Castro PS; Gong J; Machado MC; Moitra S; Ponda SS; Wang Z
    Nature; 2020 Dec; 588(7836):77-82. PubMed ID: 33268863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.