These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 36919715)
1. 3D bioprinting of a gradient stiffened gelatin-alginate hydrogel with adipose-derived stem cells for full-thickness skin regeneration. Ma Y; Wang Y; Chen D; Su T; Chang Q; Huang W; Lu F J Mater Chem B; 2023 Mar; 11(13):2989-3000. PubMed ID: 36919715 [TBL] [Abstract][Full Text] [Related]
2. 3D bioprinting of a gelatin-alginate hydrogel for tissue-engineered hair follicle regeneration. Kang D; Liu Z; Qian C; Huang J; Zhou Y; Mao X; Qu Q; Liu B; Wang J; Hu Z; Miao Y Acta Biomater; 2023 Jul; 165():19-30. PubMed ID: 35288311 [TBL] [Abstract][Full Text] [Related]
3. Effects of 3-dimensional Bioprinting Alginate/Gelatin Hydrogel Scaffold Extract on Proliferation and Differentiation of Human Dental Pulp Stem Cells. Yu H; Zhang X; Song W; Pan T; Wang H; Ning T; Wei Q; Xu HHK; Wu B; Ma D J Endod; 2019 Jun; 45(6):706-715. PubMed ID: 31056297 [TBL] [Abstract][Full Text] [Related]
4. [Gelatin/alginate hydrogel scaffolds prepared by 3D bioprinting promotes cell adhesion and proliferation of human dental pulp cells in vitro]. Yu HY; Ma DD; Wu BL Nan Fang Yi Ke Da Xue Xue Bao; 2017 May; 37(5):668-672. PubMed ID: 28539292 [TBL] [Abstract][Full Text] [Related]
5. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication. Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967 [TBL] [Abstract][Full Text] [Related]
6. Generating adipose stem cell-laden hyaluronic acid-based scaffolds using 3D bioprinting via the double crosslinked strategy for chondrogenesis. Nedunchezian S; Banerjee P; Lee CY; Lee SS; Lin CW; Wu CW; Wu SC; Chang JK; Wang CK Mater Sci Eng C Mater Biol Appl; 2021 May; 124():112072. PubMed ID: 33947564 [TBL] [Abstract][Full Text] [Related]
7. An approach for mechanical property optimization of cell-laden alginate-gelatin composite bioink with bioactive glass nanoparticles. Wei L; Li Z; Li J; Zhang Y; Yao B; Liu Y; Song W; Fu X; Wu X; Huang S J Mater Sci Mater Med; 2020 Nov; 31(11):103. PubMed ID: 33140191 [TBL] [Abstract][Full Text] [Related]
8. 3D bioprinting and in vitro study of bilayered membranous construct with human cells-laden alginate/gelatin composite hydrogels. Liu P; Shen H; Zhi Y; Si J; Shi J; Guo L; Shen SG Colloids Surf B Biointerfaces; 2019 Sep; 181():1026-1034. PubMed ID: 31382330 [TBL] [Abstract][Full Text] [Related]
9. Dynamic hyaluronic acid hydrogel with covalent linked gelatin as an anti-oxidative bioink for cartilage tissue engineering. Shi W; Fang F; Kong Y; Greer SE; Kuss M; Liu B; Xue W; Jiang X; Lovell P; Mohs AM; Dudley AT; Li T; Duan B Biofabrication; 2021 Dec; 14(1):. PubMed ID: 34905737 [TBL] [Abstract][Full Text] [Related]
10. Fish scale containing alginate dialdehyde-gelatin bioink for bone tissue engineering. Kara Özenler A; Distler T; Tihminlioglu F; Boccaccini AR Biofabrication; 2023 Feb; 15(2):. PubMed ID: 36706451 [TBL] [Abstract][Full Text] [Related]
11. Alginate based hydrogel inks for 3D bioprinting of engineered orthopedic tissues. Murab S; Gupta A; Włodarczyk-Biegun MK; Kumar A; van Rijn P; Whitlock P; Han SS; Agrawal G Carbohydr Polym; 2022 Nov; 296():119964. PubMed ID: 36088004 [TBL] [Abstract][Full Text] [Related]
12. Robot-assisted in situ bioprinting of gelatin methacrylate hydrogels with stem cells induces hair follicle-inclusive skin regeneration. Chen H; Ma X; Gao T; Zhao W; Xu T; Liu Z Biomed Pharmacother; 2023 Feb; 158():114140. PubMed ID: 36535200 [TBL] [Abstract][Full Text] [Related]
13. Multifunctionalised skin substitute of hybrid gelatin-polyvinyl alcohol bioinks for chronic wound: injectable vs. 3D bioprinting. Masri S; Fadilah NIM; Hao LQ; Maarof M; Tabata Y; Hiraoka Y; Fauzi MB Drug Deliv Transl Res; 2024 Apr; 14(4):1005-1027. PubMed ID: 37938542 [TBL] [Abstract][Full Text] [Related]
14. Bioactive nanoparticle reinforced alginate/gelatin bioink for the maintenance of stem cell stemness. Li J; Zhang Y; Enhe J; Yao B; Wang Y; Zhu D; Li Z; Song W; Duan X; Yuan X; Fu X; Huang S Mater Sci Eng C Mater Biol Appl; 2021 Jul; 126():112193. PubMed ID: 34082990 [TBL] [Abstract][Full Text] [Related]
15. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model. Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059 [TBL] [Abstract][Full Text] [Related]
17. Multi-network granular hydrogel with enhanced strength for 3D bioprinting. Wang W; Chen X; Meng T; Liu L J Biomater Appl; 2022 May; 36(10):1852-1862. PubMed ID: 35225041 [TBL] [Abstract][Full Text] [Related]
18. Bioprinted anisotropic scaffolds with fast stress relaxation bioink for engineering 3D skeletal muscle and repairing volumetric muscle loss. Li T; Hou J; Wang L; Zeng G; Wang Z; Yu L; Yang Q; Yin J; Long M; Chen L; Chen S; Zhang H; Li Y; Wu Y; Huang W Acta Biomater; 2023 Jan; 156():21-36. PubMed ID: 36002128 [TBL] [Abstract][Full Text] [Related]
19. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting. Giuseppe MD; Law N; Webb B; A Macrae R; Liew LJ; Sercombe TB; Dilley RJ; Doyle BJ J Mech Behav Biomed Mater; 2018 Mar; 79():150-157. PubMed ID: 29304429 [TBL] [Abstract][Full Text] [Related]