BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36919736)

  • 1. Study on the removal of Pb(II) from water by coated sulfur-modified nanoscale zero-valent iron.
    Tang K; Zhang S; Ren D; Zhang X; Zhang Z; Zhang X
    Water Sci Technol; 2023 Mar; 87(5):1096-1111. PubMed ID: 36919736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI).
    Fu R; Yang Y; Xu Z; Zhang X; Guo X; Bi D
    Chemosphere; 2015 Nov; 138():726-34. PubMed ID: 26267258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of illite/iron nanoparticles and their application as an adsorbent of lead ions.
    Cai X; Yu X; Yu X; Wu Z; Li S; Yu C
    Environ Sci Pollut Res Int; 2019 Oct; 26(28):29449-29459. PubMed ID: 31401799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal mechanism of Pb(ii) from soil by biochar-supported nanoscale zero-valent iron composite materials.
    Wei S; Du G; Li C; Zhang L; Li J; Mao A; He C
    RSC Adv; 2024 Jun; 14(26):18148-18160. PubMed ID: 38854839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nano modification of NZVI with an aquatic plant Azolla filiculoides to remove Pb(II) and Hg(II) from water: Aging time and mechanism study.
    Arshadi M; Abdolmaleki MK; Mousavinia F; Foroughifard S; Karimzadeh A
    J Colloid Interface Sci; 2017 Jan; 486():296-308. PubMed ID: 27723483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption/reduction of Hg(II) and Pb(II) from aqueous solutions by using bone ash/nZVI composite: effects of aging time, Fe loading quantity and co-existing ions.
    Gil A; Amiri MJ; Abedi-Koupai J; Eslamian S
    Environ Sci Pollut Res Int; 2018 Jan; 25(3):2814-2829. PubMed ID: 29143259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ prepared Chlorella vulgaris-supported nanoscale zero-valent iron to remove arsenic (III).
    Yue T; Yang Y; Chen S; Yao J; Liang H; Jia L; Fu K; Wang Z
    Environ Sci Pollut Res Int; 2023 Aug; 30(38):89676-89689. PubMed ID: 37454381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of Pb(II) removal by an activated carbon supported nanoscale zero-valent iron composite at ultralow iron content.
    Liu X; Lai D; Wang Y
    J Hazard Mater; 2019 Jan; 361():37-48. PubMed ID: 30176414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of aqueous-phase Pb(II), Cd(II), As(III), and As(V) by nanoscale zero-valent iron supported on exhausted coffee grounds.
    Park MH; Jeong S; Lee G; Park H; Kim JY
    Waste Manag; 2019 Jun; 92():49-58. PubMed ID: 31160026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly efficient removal of Se(IV) using reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO): selenium removal mechanism.
    Sun F; Zhu Y; Liu X; Chi Z
    Environ Sci Pollut Res Int; 2023 Feb; 30(10):27560-27569. PubMed ID: 36385336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale Zero-Valent Iron (NZVI) supported on sineguelas waste for Pb(II) removal from aqueous solution: kinetics, thermodynamic and mechanism.
    Arshadi M; Soleymanzadeh M; Salvacion JW; SalimiVahid F
    J Colloid Interface Sci; 2014 Jul; 426():241-51. PubMed ID: 24863789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sodium citrate and biochar synergistic improvement of nanoscale zero-valent iron composite for the removal of chromium (Ⅵ) in aqueous solutions.
    Zhou H; Ye M; Zhao Y; Baig SA; Huang N; Ma M
    J Environ Sci (China); 2022 May; 115():227-239. PubMed ID: 34969450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and Characterization of Reduced Graphene Oxide-Supported Nanoscale Zero-Valent Iron (nZVI/rGO) Composites Used for Pb(II) Removal.
    Fan M; Li T; Hu J; Cao R; Wu Q; Wei X; Li L; Shi X; Ruan W
    Materials (Basel); 2016 Aug; 9(8):. PubMed ID: 28773813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced removal of mercury and lead by a novel and efficient surface-functionalized imogolite with nanoscale zero-valent iron material.
    Martinis EM; Denardin JC; Calderón R; Flores C; Manquián-Cerda K; Maldonado T; Arancibia-Miranda N
    Environ Sci Pollut Res Int; 2022 Mar; 29(14):20221-20233. PubMed ID: 34725756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of Hg(II) and Pb(II) ions by nanoscale zero valent iron supported on ostrich bone ash in a fixed-bed column system.
    Amiri MJ; Abedi-Koupai J; Eslamian S
    Water Sci Technol; 2017 Jul; 76(3-4):671-682. PubMed ID: 28759449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale zero-valent iron functionalized Posidonia oceanica marine biomass for heavy metal removal from water.
    Boubakri S; Djebbi MA; Bouaziz Z; Namour P; Ben Haj Amara A; Ghorbel-Abid I; Kalfat R
    Environ Sci Pollut Res Int; 2017 Dec; 24(36):27879-27896. PubMed ID: 28988320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective removal of two fluoroquinolone antibiotics by PEG-4000 stabilized nanoscale zero-valent iron supported onto zeolite (PZ-NZVI).
    Zhao J; Yang X; Liang G; Wang Z; Li S; Wang Z; Xie X
    Sci Total Environ; 2020 Mar; 710():136289. PubMed ID: 31923667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of bimetallic nanoscale zero-valent iron particles for removal of oxytetracycline.
    Wu Y; Yue Q; Gao Y; Ren Z; Gao B
    J Environ Sci (China); 2018 Jul; 69():173-182. PubMed ID: 29941253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic insight into the adsorption of mercury (II) on the surface of red mud supported nanoscale zero-valent iron composite.
    Sahu MK; Patel RK; Kurwadkar S
    J Contam Hydrol; 2022 Apr; 246():103959. PubMed ID: 35066263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of a modified metal-organic framework UiO-66 with nanoscale zero-valent iron for removal of uranium (VI) from aqueous solution.
    Yang F; Xie S; Wang G; Yu CW; Liu H; Liu Y
    Environ Sci Pollut Res Int; 2020 Jun; 27(16):20246-20258. PubMed ID: 32242317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.