These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 36919929)

  • 21. Chlorination of iodide-containing waters in the presence of CuO: formation of periodate.
    Liu C; Salhi E; Croué JP; von Gunten U
    Environ Sci Technol; 2014 Nov; 48(22):13173-80. PubMed ID: 25313794
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metal Reduction and Protein Secretion Genes Required for Iodate Reduction by Shewanella oneidensis.
    Toporek YJ; Mok JK; Shin HD; Lee BD; Lee MH; DiChristina TJ
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30446562
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Iodine and disinfection: theoretical study on mode of action, efficiency, stability, and analytical aspects in the aqueous system.
    Gottardi W
    Arch Pharm (Weinheim); 1999 May; 332(5):151-7. PubMed ID: 10409102
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Degradation of organic pollutants in/on snow and ice by singlet molecular oxygen (¹O₂*) and an organic triplet excited state.
    Bower JP; Anastasio C
    Environ Sci Process Impacts; 2014 Apr; 16(4):748-56. PubMed ID: 24487942
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dried powder of corn stalk as a potential biosorbent for the removal of iodate from aqueous solution.
    Zhang K; Chen T
    J Environ Radioact; 2018 Oct; 190-191():73-80. PubMed ID: 29758390
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analyte-triggered cascade signal amplification strategy for highly sensitive detection of iodate in table salt with dual-readout signals.
    Chen H; Li Q; Hu B; Zhu W; Xia H; Yang W
    Talanta; 2023 Aug; 261():124661. PubMed ID: 37201339
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Accelerated redox reaction between chromate and phenolic pollutants during freezing.
    Ju J; Kim J; Vetráková Ľ; Seo J; Heger D; Lee C; Yoon HI; Kim K; Kim J
    J Hazard Mater; 2017 May; 329():330-338. PubMed ID: 28189878
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Activation of Periodate by Freezing for the Degradation of Aqueous Organic Pollutants.
    Choi Y; Yoon HI; Lee C; Vetráková L; Heger D; Kim K; Kim J
    Environ Sci Technol; 2018 May; 52(9):5378-5385. PubMed ID: 29648451
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mild Periodic Acid Flux and Hydrothermal Methods for the Synthesis of Crystalline f-Element-Bearing Iodate Compounds.
    Wang Y; Duan T; Weng Z; Ling J; Yin X; Chen L; Sheng D; Diwu J; Chai Z; Liu N; Wang S
    Inorg Chem; 2017 Nov; 56(21):13041-13050. PubMed ID: 28991439
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reductive transformation of hexavalent chromium by ferrous ions in a frozen environment: Mechanism, kinetics, and environmental implications.
    Nguyen QA; Kim B; Chung HY; Nguyen AQK; Kim J; Kim K
    Ecotoxicol Environ Saf; 2021 Jan; 208():111735. PubMed ID: 33396064
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structures, thermal behaviors, and luminescent properties of anhydrous lanthanum iodate polymorphs.
    Taouti MB; Suffren Y; Leynaud O; Benbertal D; Brenier A; Gautier-Luneau I
    Inorg Chem; 2015 Apr; 54(7):3608-18. PubMed ID: 25790146
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sequential Separation of Iodine Species in Nitric Acid Media for Speciation Analysis of
    Jia T; Shi K; Wang Y; Yang J; Hou X
    Anal Chem; 2022 Aug; 94(31):10959-10966. PubMed ID: 35878318
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Critical role of water content in the formation and reactivity of uranium, neptunium, and plutonium iodates under hydrothermal conditions: implications for the oxidative dissolution of spent nuclear fuel.
    Bray TH; Ling J; Choi ES; Brooks JS; Beitz JV; Sykora RE; Haire RG; Stanbury DM; Albrecht-Schmitt TE
    Inorg Chem; 2007 Apr; 46(9):3663-8. PubMed ID: 17397146
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Species transformation and removal mechanism of various iodine species at the Bi
    Wang N; Xiong R; Zhang G; Liu R; He X; Huang S; Liu H; Qu J
    Water Res; 2022 Sep; 223():118965. PubMed ID: 35973251
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phototransformation of iodate by UV irradiation: Kinetics and iodinated trihalomethane formation during subsequent chlor(am)ination.
    Tian FX; Hu XJ; Xu B; Zhang TY; Gao YQ
    J Hazard Mater; 2017 Mar; 326():138-144. PubMed ID: 28013157
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synchronous Moderate Oxidation and Adsorption on the Surface of γ-MnO
    Wang N; Zhang G; Xiong R; Liu R; Liu H; Qu J
    Environ Sci Technol; 2022 Jul; 56(13):9417-9427. PubMed ID: 35737437
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Speciation of iodine isotopes inside and outside of a contaminant plume at the Savannah River Site.
    Schwehr KA; Otosaka S; Merchel S; Kaplan DI; Zhang S; Xu C; Li HP; Ho YF; Yeager CM; Santschi PH;
    Sci Total Environ; 2014 Nov; 497-498():671-678. PubMed ID: 25173764
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular Interaction of Aqueous Iodine Species with Humic Acid Studied by I and C K-Edge X-ray Absorption Spectroscopy.
    Li D; Xu C; Yeager CM; Lin P; Xing W; Schwehr KA; Chen N; Arthur Z; Kaplan DI; Santschi PH
    Environ Sci Technol; 2019 Nov; 53(21):12416-12424. PubMed ID: 31553176
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ba
    Xu MB; Li JJ; Wu HY; Ma N; Yu N; Zhuo MF; Chen J; Du KZ
    Dalton Trans; 2024 Jun; 53(25):10536-10543. PubMed ID: 38842192
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photochemical degradation of iodate by UV/H
    Tian FX; Ma SX; Xu B; Hu XJ; Xing HB; Liu J; Wang J; Li YY; Wang B; Jiang X
    Chemosphere; 2019 Apr; 221():292-300. PubMed ID: 30640012
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.