These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 36920064)
21. Steroid profile in dried blood spots by liquid chromatography tandem mass spectrometry: Application to newborn screening for congenital adrenal hyperplasia in China. Zhan X; Han L; Qiu W; Gu X; Guo J; Chang S; Wang Y; Zhang H Steroids; 2022 Sep; 185():109056. PubMed ID: 35660382 [TBL] [Abstract][Full Text] [Related]
22. Early Development of Newborn Screening for HCU and Current Challenges. Levy HL Int J Neonatal Screen; 2021 Oct; 7(4):. PubMed ID: 34842599 [TBL] [Abstract][Full Text] [Related]
23. Streamlined determination of lysophosphatidylcholines in dried blood spots for newborn screening of X-linked adrenoleukodystrophy. Turgeon CT; Moser AB; Mørkrid L; Magera MJ; Gavrilov DK; Oglesbee D; Raymond K; Rinaldo P; Matern D; Tortorelli S Mol Genet Metab; 2015 Jan; 114(1):46-50. PubMed ID: 25481105 [TBL] [Abstract][Full Text] [Related]
24. Concurrent Confirmation and Differential Diagnosis of Congenital Adrenal Hyperplasia from Dried Blood Spots: Application of a Second-Tier LC-MS/MS Assay in a Cross-Border Cooperation for Newborn Screening. Monostori P; Szabó P; Marginean O; Bereczki C; Karg E Horm Res Paediatr; 2015; 84(5):311-8. PubMed ID: 26397944 [TBL] [Abstract][Full Text] [Related]
25. Prevalence, characteristics, and costs of diagnosed homocystinuria, elevated homocysteine, and phenylketonuria in the United States: a retrospective claims-based comparison. Sellos-Moura M; Glavin F; Lapidus D; Evans K; Lew CR; Irwin DE BMC Health Serv Res; 2020 Mar; 20(1):183. PubMed ID: 32143624 [TBL] [Abstract][Full Text] [Related]
26. Determination of methylmalonic acid, 2-methylcitric acid, and total homocysteine in dried blood spots by liquid chromatography-tandem mass spectrometry: A reliable follow-up method for propionylcarnitine-related disorders in newborn screening. Hu Z; Yang J; Lin Y; Wang J; Hu L; Zhang C; Zhang Y; Huang X J Med Screen; 2021 Jun; 28(2):93-99. PubMed ID: 32615850 [TBL] [Abstract][Full Text] [Related]
27. Estimated prevalence of moderate to severely elevated total homocysteine levels in the United States: A missed opportunity for diagnosis of homocystinuria? Sellos-Moura M; Glavin F; Lapidus D; Evans KA; Palmer L; Irwin DE Mol Genet Metab; 2020 May; 130(1):36-40. PubMed ID: 32057642 [TBL] [Abstract][Full Text] [Related]
28. Prospective identification by neonatal screening of patients with guanidinoacetate methyltransferase deficiency. Hart K; Rohrwasser A; Wallis H; Golsan H; Shao J; Anderson T; Wang X; Szabo-Fresnais N; Morrissey M; Kay DM; Wojcik M; Galvin-Parton PA; Longo N; Caggana M; Pasquali M Mol Genet Metab; 2021; 134(1-2):60-64. PubMed ID: 34389248 [TBL] [Abstract][Full Text] [Related]
30. The first Saudi baby with classic homocystinuria diagnosed by universal newborn screening. AlAnzi T; Al Harbi FJ; AlFaifii J; Mohamed S Saudi Med J; 2021 Feb; 42(2):219-222. PubMed ID: 33563743 [TBL] [Abstract][Full Text] [Related]
32. A rapid UPLC-MS/MS method for simultaneous separation of 48 acylcarnitines in dried blood spots and plasma useful as a second-tier test for expanded newborn screening. Gucciardi A; Pirillo P; Di Gangi IM; Naturale M; Giordano G Anal Bioanal Chem; 2012 Aug; 404(3):741-51. PubMed ID: 22766757 [TBL] [Abstract][Full Text] [Related]
33. Development of a Universal Second-Tier Newborn Screening LC-MS/MS Method for Amino Acids, Lysophosphatidylcholines, and Organic Acids. Kilgore MB; Platis D; Lim T; Isenberg S; Pickens CA; Cuthbert C; Petritis K Anal Chem; 2023 Feb; 95(6):3187-3194. PubMed ID: 36724346 [TBL] [Abstract][Full Text] [Related]
34. Improving Harmonization and Standardization of Expanded Newborn Screening Results by Optimization of the Legacy Flow Injection Analysis Tandem Mass Spectrometry Methods and Application of a Standardized Calibration Approach. Carling RS; Whyte E; John C; Garstone R; Goddard P; Greenfield T; Hogg SL; Le Masurier C; Cowen S; Moat SJ; Hopley C Clin Chem; 2022 Jul; 68(8):1075-1083. PubMed ID: 35699503 [TBL] [Abstract][Full Text] [Related]
35. Steroid profiling for congenital adrenal hyperplasia by tandem mass spectrometry as a second-tier test reduces follow-up burdens in a tertiary care hospital: a retrospective and prospective evaluation. Seo JY; Park HD; Kim JW; Oh HJ; Yang JS; Chang YS; Park WS; Lee SY J Perinat Med; 2014 Jan; 42(1):121-7. PubMed ID: 23989111 [TBL] [Abstract][Full Text] [Related]
36. Mass spectrometry in clinical chemistry: the case of newborn screening. la Marca G J Pharm Biomed Anal; 2014 Dec; 101():174-82. PubMed ID: 24844843 [TBL] [Abstract][Full Text] [Related]
37. A high-throughput newborn screening approach for SCID, SMA, and SCD combining multiplex qPCR and tandem mass spectrometry. Tesorero R; Janda J; Hörster F; Feyh P; Mütze U; Hauke J; Schwarz K; Kunz JB; Hoffmann GF; Okun JG PLoS One; 2023; 18(3):e0283024. PubMed ID: 36897914 [TBL] [Abstract][Full Text] [Related]
39. Succinylacetone as primary marker to detect tyrosinemia type I in newborns and its measurement by newborn screening programs. De Jesús VR; Adam BW; Mandel D; Cuthbert CD; Matern D Mol Genet Metab; 2014; 113(1-2):67-75. PubMed ID: 25066104 [TBL] [Abstract][Full Text] [Related]
40. Second-tier test for quantification of alloisoleucine and branched-chain amino acids in dried blood spots to improve newborn screening for maple syrup urine disease (MSUD). Oglesbee D; Sanders KA; Lacey JM; Magera MJ; Casetta B; Strauss KA; Tortorelli S; Rinaldo P; Matern D Clin Chem; 2008 Mar; 54(3):542-9. PubMed ID: 18178665 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]