BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 36920156)

  • 1. Calcium imaging and analysis of the jugular-nodose ganglia enables identification of distinct vagal sensory neuron subsets.
    Huerta TS; Haider B; Adamovich-Zeitlin R; Chen AC; Chaudhry S; Zanos TP; Chavan SS; Tracey KJ; Chang EH
    J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36920156
    [No Abstract]   [Full Text] [Related]  

  • 2. Substance P in the vagal sensory ganglia: localization in cell bodies and pericellular arborizations.
    Katz DM; Karten HJ
    J Comp Neurol; 1980 Sep; 193(2):549-64. PubMed ID: 6160166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Allergen challenge sensitizes TRPA1 in vagal sensory neurons and afferent C-fiber subtypes in guinea pig esophagus.
    Liu Z; Hu Y; Yu X; Xi J; Fan X; Tse CM; Myers AC; Pasricha PJ; Li X; Yu S
    Am J Physiol Gastrointest Liver Physiol; 2015 Mar; 308(6):G482-8. PubMed ID: 25591867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping of Sensory Nerve Subsets within the Vagal Ganglia and the Brainstem Using Reporter Mice for Pirt, TRPV1, 5-HT3, and Tac1 Expression.
    Kim SH; Hadley SH; Maddison M; Patil M; Cha B; Kollarik M; Taylor-Clark TE
    eNeuro; 2020; 7(2):. PubMed ID: 32060036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TRPM8 function and expression in vagal sensory neurons and afferent nerves innervating guinea pig esophagus.
    Yu X; Hu Y; Ru F; Kollarik M; Undem BJ; Yu S
    Am J Physiol Gastrointest Liver Physiol; 2015 Mar; 308(6):G489-96. PubMed ID: 25591866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for multiple bulbar and higher brain circuits processing sensory inputs from the respiratory system in humans.
    Farrell MJ; Bautista TG; Liang E; Azzollini D; Egan GF; Mazzone SB
    J Physiol; 2020 Dec; 598(24):5771-5787. PubMed ID: 33029786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct and common expression of receptors for inflammatory mediators in vagal nodose versus jugular capsaicin-sensitive/TRPV1-positive neurons detected by low input RNA sequencing.
    Wang J; Kollarik M; Ru F; Sun H; McNeil B; Dong X; Stephens G; Korolevich S; Brohawn P; Kolbeck R; Undem B
    PLoS One; 2017; 12(10):e0185985. PubMed ID: 28982197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping of the Sensory Innervation of the Mouse Lung by Specific Vagal and Dorsal Root Ganglion Neuronal Subsets.
    Kim SH; Patil MJ; Hadley SH; Bahia PK; Butler SG; Madaram M; Taylor-Clark TE
    eNeuro; 2022; 9(2):. PubMed ID: 35365503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential immunostaining patterns of transient receptor potential (TRP) ion channels in the rat nodose ganglion.
    Jawaid S; Herring AI; Getsy PM; Lewis SJ; Watanabe M; Kolesova H
    J Anat; 2022 Aug; 241(2):230-244. PubMed ID: 35396708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 5-Hydroxytryptamine selectively activates the vagal nodose C-fibre subtype in the guinea-pig oesophagus.
    Yu S; Ru F; Ouyang A; Kollarik M
    Neurogastroenterol Motil; 2008 Sep; 20(9):1042-50. PubMed ID: 18482251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parvalbumin and calbindin D-28k in vagal and glossopharyngeal sensory neurons of the rat.
    Ichikawa H; Helke CJ
    Brain Res; 1995 Mar; 675(1-2):337-41. PubMed ID: 7796149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenotypic distinctions between the nodose and jugular TRPV1-positive vagal sensory neurons in the cynomolgus monkey.
    Kollarik M; Ru F; Undem BJ
    Neuroreport; 2019 May; 30(8):533-537. PubMed ID: 30896676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct expression of cold receptors (TRPM8 and TRPA1) in the rat nodose-petrosal ganglion complex.
    Hondoh A; Ishida Y; Ugawa S; Ueda T; Shibata Y; Yamada T; Shikano M; Murakami S; Shimada S
    Brain Res; 2010 Mar; 1319():60-9. PubMed ID: 20079339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenotypic distinctions between neural crest and placodal derived vagal C-fibres in mouse lungs.
    Nassenstein C; Taylor-Clark TE; Myers AC; Ru F; Nandigama R; Bettner W; Undem BJ
    J Physiol; 2010 Dec; 588(Pt 23):4769-83. PubMed ID: 20937710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective inhibition of vagal afferent nerve pathways regulating cough using Nav 1.7 shRNA silencing in guinea pig nodose ganglia.
    Muroi Y; Ru F; Chou YL; Carr MJ; Undem BJ; Canning BJ
    Am J Physiol Regul Integr Comp Physiol; 2013 Jun; 304(11):R1017-23. PubMed ID: 23576611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain stem projections of sensory and motor components of the vagus complex in the cat: I. The cervical vagus and nodose ganglion.
    Kalia M; Mesulam MM
    J Comp Neurol; 1980 Sep; 193(2):435-65. PubMed ID: 7440777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased c-Fos expression in nodose ganglion in rats with electrical vagus nerve stimulation.
    Gil K; Bugajski A; Skowron B; Thor P
    Folia Med Cracov; 2011; 51(1-4):45-58. PubMed ID: 22891537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased acid responsiveness in vagal sensory neurons in a guinea pig model of eosinophilic esophagitis.
    Hu Y; Liu Z; Yu X; Pasricha PJ; Undem BJ; Yu S
    Am J Physiol Gastrointest Liver Physiol; 2014 Jul; 307(2):G149-57. PubMed ID: 24875100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Method to Target and Isolate Airway-innervating Sensory Neurons in Mice.
    Kaelberer MM; Jordt SE
    J Vis Exp; 2016 Apr; (110):. PubMed ID: 27168016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Atlas of Vagal Sensory Neurons and Their Molecular Specialization.
    Kupari J; Häring M; Agirre E; Castelo-Branco G; Ernfors P
    Cell Rep; 2019 May; 27(8):2508-2523.e4. PubMed ID: 31116992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.