These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36920163)

  • 1. Uncovering the Enhancement Mechanism of the Oxygen Reduction Reaction on Perovskite/Ruddlesden-Popper Oxide Heterostructures (Nd,Sr)CoO
    Lian S; He L; Li C; Ren J; Bi L; Chen M; Lin Z
    J Phys Chem Lett; 2023 Mar; 14(11):2869-2877. PubMed ID: 36920163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anomalous Interface and Surface Strontium Segregation in (La1-ySry)2CoO4±δ/La1-xSrxCoO3-δ Heterostructured Thin Films.
    Feng Z; Yacoby Y; Gadre MJ; Lee YL; Hong WT; Zhou H; Biegalski MD; Christen HM; Adler SB; Morgan D; Shao-Horn Y
    J Phys Chem Lett; 2014 Mar; 5(6):1027-34. PubMed ID: 26270983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New mechanistic insight into the oxygen reduction reaction on Ruddlesden-Popper cathodes for intermediate-temperature solid oxide fuel cells.
    Li W; Guan B; Zhang X; Yan J; Zhou Y; Liu X
    Phys Chem Chem Phys; 2016 Mar; 18(12):8502-11. PubMed ID: 26939545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cation interdiffusion model for enhanced oxygen kinetics at oxide heterostructure interfaces.
    Gadre MJ; Lee YL; Morgan D
    Phys Chem Chem Phys; 2012 Feb; 14(8):2606-16. PubMed ID: 22270079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intergrowth between the Oxynitride Perovskite SrTaO
    Suemoto Y; Masubuchi Y; Nagamine Y; Matsutani A; Shibahara T; Yamazaki K; Kikkawa S
    Inorg Chem; 2018 Aug; 57(15):9086-9095. PubMed ID: 30010331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rewritable High-Mobility Electrons in Oxide Heterostructure of Layered Perovskite/Perovskite.
    Chen X; Zhang T; Yu Y; Cai X; Gao T; Zhang T; Sun H; Gu C; Gu Z; Zhu Y; Zhou J; Nie Y; Pan X
    ACS Appl Mater Interfaces; 2021 Feb; 13(6):7812-7821. PubMed ID: 33529011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical stability of (La,Sr)CoO
    Dos Santos-Gómez L; Sanna S; Norby P; Pryds N; Losilla ER; Marrero-López D; Esposito V
    Nanoscale; 2019 Feb; 11(6):2916-2924. PubMed ID: 30688947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Oxygen Reduction Activity on Ruddlesden-Popper Phase Decorated La
    Hong T; Zhao M; Brinkman K; Chen F; Xia C
    ACS Appl Mater Interfaces; 2017 Mar; 9(10):8659-8668. PubMed ID: 28181431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Materials A
    Tarasova N; Animitsa I
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Layered Perovskites BaM
    Tarasova N; Galisheva A; Animitsa I; Belova K; Egorova A; Abakumova E; Medvedev D
    Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Performance Photodetectors Based on Lead-Free 2D Ruddlesden-Popper Perovskite/MoS
    Fang C; Wang H; Shen Z; Shen H; Wang S; Ma J; Wang J; Luo H; Li D
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8419-8427. PubMed ID: 30702273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unusual synergistic effect in layered Ruddlesden-Popper oxide enables ultrafast hydrogen evolution.
    Zhu Y; Tahini HA; Hu Z; Dai J; Chen Y; Sun H; Zhou W; Liu M; Smith SC; Wang H; Shao Z
    Nat Commun; 2019 Jan; 10(1):149. PubMed ID: 30635568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NO
    Tamai K; Hosokawa S; Okamoto H; Asakura H; Teramura K; Tanaka T
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):26985-26993. PubMed ID: 31262168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing the Intrinsic Activity and Stability of Perovskite Cobaltite at Elevated Temperature Through Surface Stress.
    Zhou M; Liu J; Ye Y; Sun X; Chen H; Zhou D; Yin Y; Zhang N; Ling Y; Ciucci F; Chen Y
    Small; 2021 Nov; 17(45):e2104144. PubMed ID: 34605170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-functional application potential of Ruddlesden-Popper perovskite-based heterostructure PtSe
    Liao CS; Liu B; Yang JL; Cai MQ
    J Phys Condens Matter; 2023 Jan; 35(11):. PubMed ID: 36603226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-performance photovoltaic application of the 2D all-inorganic Ruddlesden-Popper perovskite heterostructure Cs
    Pan LY; Ding YF; Liu HQ; Cai MQ
    Phys Chem Chem Phys; 2021 Oct; 23(41):23703-23710. PubMed ID: 34642715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Durable Ruddlesden-Popper Cathode for Protonic Ceramic Fuel Cells.
    Huan D; Zhang L; Li X; Xie Y; Shi N; Xue S; Xia C; Peng R; Lu Y
    ChemSusChem; 2020 Sep; 13(18):4994-5003. PubMed ID: 32671967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling Oxygen Mobility in Ruddlesden-Popper Oxides.
    Lee D; Lee HN
    Materials (Basel); 2017 Mar; 10(4):. PubMed ID: 28772732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimized band gap and fast interlayer charge transfer in two-dimensional perovskite oxynitride Ba
    Cen YL; Shi JJ; Zhang M; Wu M; Du J; Guo WH; Zhu YH
    J Colloid Interface Sci; 2019 Jun; 546():20-31. PubMed ID: 30901689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical Investigation of the Electrochemical Oxidation of H
    Szaro NA; Ammal SC; Chen F; Heyden A
    ACS Appl Mater Interfaces; 2023 Jun; 15(25):30139-30151. PubMed ID: 37314993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.