These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 36920168)

  • 1.
    Tjaden B
    RNA Biol; 2023 Jan; 20(1):77-84. PubMed ID: 36920168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unprecedented high-resolution view of bacterial operon architecture revealed by RNA sequencing.
    Conway T; Creecy JP; Maddox SM; Grissom JE; Conkle TL; Shadid TM; Teramoto J; San Miguel P; Shimada T; Ishihama A; Mori H; Wanner BL
    mBio; 2014 Jul; 5(4):e01442-14. PubMed ID: 25006232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SMRT-Cappable-seq reveals complex operon variants in bacteria.
    Yan B; Boitano M; Clark TA; Ettwiller L
    Nat Commun; 2018 Sep; 9(1):3676. PubMed ID: 30201986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directional RNA-seq reveals highly complex condition-dependent transcriptomes in E. coli K12 through accurate full-length transcripts assembling.
    Li S; Dong X; Su Z
    BMC Genomics; 2013 Jul; 14():520. PubMed ID: 23899370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational analysis of bacterial RNA-Seq data.
    McClure R; Balasubramanian D; Sun Y; Bobrovskyy M; Sumby P; Genco CA; Vanderpool CK; Tjaden B
    Nucleic Acids Res; 2013 Aug; 41(14):e140. PubMed ID: 23716638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing and annotating the genome using RNA-seq data.
    Chen G; Shi T; Shi L
    Sci China Life Sci; 2017 Feb; 60(2):116-125. PubMed ID: 27294835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptome dynamics-based operon prediction in prokaryotes.
    Fortino V; Smolander OP; Auvinen P; Tagliaferri R; Greco D
    BMC Bioinformatics; 2014 May; 15():145. PubMed ID: 24884724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA-Seq Data Analysis Pipeline for Plants: Transcriptome Assembly, Alignment, and Differential Expression Analysis.
    Burks DJ; Azad RK
    Methods Mol Biol; 2022; 2396():47-60. PubMed ID: 34786675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An empirical strategy to detect bacterial transcript structure from directional RNA-seq transcriptome data.
    Wang Y; MacKenzie KD; White AP
    BMC Genomics; 2015 May; 16(1):359. PubMed ID: 25947005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.
    Johnson BK; Scholz MB; Teal TK; Abramovitch RB
    BMC Bioinformatics; 2016 Feb; 17():66. PubMed ID: 26847232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo assembly of bacterial transcriptomes from RNA-seq data.
    Tjaden B
    Genome Biol; 2015 Jan; 16(1):1. PubMed ID: 25583448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Transcriptome Map of Actinobacillus pleuropneumoniae at Single-Nucleotide Resolution Using Deep RNA-Seq.
    Su Z; Zhu J; Xu Z; Xiao R; Zhou R; Li L; Chen H
    PLoS One; 2016; 11(3):e0152363. PubMed ID: 27018591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A high-resolution single-molecule sequencing-based Arabidopsis transcriptome using novel methods of Iso-seq analysis.
    Zhang R; Kuo R; Coulter M; Calixto CPG; Entizne JC; Guo W; Marquez Y; Milne L; Riegler S; Matsui A; Tanaka M; Harvey S; Gao Y; Wießner-Kroh T; Paniagua A; Crespi M; Denby K; Hur AB; Huq E; Jantsch M; Jarmolowski A; Koester T; Laubinger S; Li QQ; Gu L; Seki M; Staiger D; Sunkar R; Szweykowska-Kulinska Z; Tu SL; Wachter A; Waugh R; Xiong L; Zhang XN; Conesa A; Reddy ASN; Barta A; Kalyna M; Brown JWS
    Genome Biol; 2022 Jul; 23(1):149. PubMed ID: 35799267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Nile rat transcriptomic landscape across 22 organs by ultra-deep sequencing and comparative RNA-seq pipeline (CRSP).
    Toh H; Bagheri A; Dewey C; Stewart R; Yan L; Clegg D; Thomson JA; Jiang P
    Comput Biol Chem; 2023 Feb; 102():107795. PubMed ID: 36436489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. De novo transcriptome assembly: A comprehensive cross-species comparison of short-read RNA-Seq assemblers.
    Hölzer M; Marz M
    Gigascience; 2019 May; 8(5):. PubMed ID: 31077315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads.
    Martin J; Bruno VM; Fang Z; Meng X; Blow M; Zhang T; Sherlock G; Snyder M; Wang Z
    BMC Genomics; 2010 Nov; 11():663. PubMed ID: 21106091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembly-free rapid differential gene expression analysis in non-model organisms using DNA-protein alignment.
    Shrestha AMS; B Guiao JE; R Santiago KC
    BMC Genomics; 2022 Feb; 23(1):97. PubMed ID: 35120462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Independent component analysis recovers consistent regulatory signals from disparate datasets.
    Sastry AV; Hu A; Heckmann D; Poudel S; Kavvas E; Palsson BO
    PLoS Comput Biol; 2021 Feb; 17(2):e1008647. PubMed ID: 33529205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique.
    Pfeifer-Sancar K; Mentz A; Rückert C; Kalinowski J
    BMC Genomics; 2013 Dec; 14():888. PubMed ID: 24341750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using RNentropy to Detect Significant Variation in Gene Expression Across Multiple RNA-Seq or Single-Cell RNA-Seq Samples.
    Zambelli F; Pavesi G
    Methods Mol Biol; 2021; 2284():77-96. PubMed ID: 33835439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.