These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 36921039)

  • 1. The patterned assembly and stepwise Vps4-mediated disassembly of composite ESCRT-III polymers drives archaeal cell division.
    Hurtig F; Burgers TCQ; Cezanne A; Jiang X; Mol FN; Traparić J; Pulschen AA; Nierhaus T; Tarrason-Risa G; Harker-Kirschneck L; Löwe J; Šarić A; Vlijm R; Baum B
    Sci Adv; 2023 Mar; 9(11):eade5224. PubMed ID: 36921039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Structure, Function and Roles of the Archaeal ESCRT Apparatus.
    Samson RY; Dobro MJ; Jensen GJ; Bell SD
    Subcell Biochem; 2017; 84():357-377. PubMed ID: 28500532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The archaeal division protein CdvB1 assembles into polymers that are depolymerized by CdvC.
    Blanch Jover A; De Franceschi N; Fenel D; Weissenhorn W; Dekker C
    FEBS Lett; 2022 Apr; 596(7):958-969. PubMed ID: 35238034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The proteasome controls ESCRT-III-mediated cell division in an archaeon.
    Tarrason Risa G; Hurtig F; Bray S; Hafner AE; Harker-Kirschneck L; Faull P; Davis C; Papatziamou D; Mutavchiev DR; Fan C; Meneguello L; Arashiro Pulschen A; Dey G; Culley S; Kilkenny M; Souza DP; Pellegrini L; de Bruin RAM; Henriques R; Snijders AP; Šarić A; Lindås AC; Robinson NP; Baum B
    Science; 2020 Aug; 369(6504):. PubMed ID: 32764038
    [No Abstract]   [Full Text] [Related]  

  • 5. Live Imaging of a Hyperthermophilic Archaeon Reveals Distinct Roles for Two ESCRT-III Homologs in Ensuring a Robust and Symmetric Division.
    Pulschen AA; Mutavchiev DR; Culley S; Sebastian KN; Roubinet J; Roubinet M; Risa GT; van Wolferen M; Roubinet C; Schmidt U; Dey G; Albers SV; Henriques R; Baum B
    Curr Biol; 2020 Jul; 30(14):2852-2859.e4. PubMed ID: 32502411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diversity, origin, and evolution of the ESCRT systems.
    Makarova KS; Tobiasson V; Wolf YI; Lu Z; Liu Y; Zhang S; Krupovic M; Li M; Koonin EV
    mBio; 2024 Mar; 15(3):e0033524. PubMed ID: 38380930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical mechanisms of ESCRT-III-driven cell division.
    Harker-Kirschneck L; Hafner AE; Yao T; Vanhille-Campos C; Jiang X; Pulschen A; Hurtig F; Hryniuk D; Culley S; Henriques R; Baum B; Šarić A
    Proc Natl Acad Sci U S A; 2022 Jan; 119(1):. PubMed ID: 34983838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of ESCRT-III polymers in cell division across the tree of life.
    Carlton JG; Baum B
    Curr Opin Cell Biol; 2023 Dec; 85():102274. PubMed ID: 37944425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coordination of substrate binding and ATP hydrolysis in Vps4-mediated ESCRT-III disassembly.
    Davies BA; Azmi IF; Payne J; Shestakova A; Horazdovsky BF; Babst M; Katzmann DJ
    Mol Biol Cell; 2010 Oct; 21(19):3396-408. PubMed ID: 20702581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of VPS4 in ESCRT-III polymer remodeling.
    Caillat C; Maity S; Miguet N; Roos WH; Weissenhorn W
    Biochem Soc Trans; 2019 Feb; 47(1):441-448. PubMed ID: 30783012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coevolution of Eukaryote-like Vps4 and ESCRT-III Subunits in the Asgard Archaea.
    Lu Z; Fu T; Li T; Liu Y; Zhang S; Li J; Dai J; Koonin EV; Li G; Chu H; Li M
    mBio; 2020 May; 11(3):. PubMed ID: 32430468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dividing the Archaeal Way: The Ancient Cdv Cell-Division Machinery.
    Caspi Y; Dekker C
    Front Microbiol; 2018; 9():174. PubMed ID: 29551994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ESCRT-III mediated cell division in Sulfolobus acidocaldarius - a reconstitution perspective.
    Härtel T; Schwille P
    Front Microbiol; 2014; 5():257. PubMed ID: 24926288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel mechanism of regulating the ATPase VPS4 by its cofactor LIP5 and the endosomal sorting complex required for transport (ESCRT)-III protein CHMP5.
    Vild CJ; Li Y; Guo EZ; Liu Y; Xu Z
    J Biol Chem; 2015 Mar; 290(11):7291-303. PubMed ID: 25637630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric ring structure of Vps4 required for ESCRT-III disassembly.
    Caillat C; Macheboeuf P; Wu Y; McCarthy AA; Boeri-Erba E; Effantin G; Göttlinger HG; Weissenhorn W; Renesto P
    Nat Commun; 2015 Dec; 6():8781. PubMed ID: 26632262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational Changes in the Endosomal Sorting Complex Required for the Transport III Subunit Ist1 Lead to Distinct Modes of ATPase Vps4 Regulation.
    Tan J; Davies BA; Payne JA; Benson LM; Katzmann DJ
    J Biol Chem; 2015 Dec; 290(50):30053-65. PubMed ID: 26515066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution and assembly of ESCRTs.
    Ghazi-Tabatabai S; Obita T; Pobbati AV; Perisic O; Samson RY; Bell SD; Williams RL
    Biochem Soc Trans; 2009 Feb; 37(Pt 1):151-5. PubMed ID: 19143621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Meiotic Clade AAA ATPases: Protein Polymer Disassembly Machines.
    Monroe N; Hill CP
    J Mol Biol; 2016 May; 428(9 Pt B):1897-911. PubMed ID: 26555750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structures, Functions, and Dynamics of ESCRT-III/Vps4 Membrane Remodeling and Fission Complexes.
    McCullough J; Frost A; Sundquist WI
    Annu Rev Cell Dev Biol; 2018 Oct; 34():85-109. PubMed ID: 30095293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crenarchaeal CdvA forms double-helical filaments containing DNA and interacts with ESCRT-III-like CdvB.
    Moriscot C; Gribaldo S; Jault JM; Krupovic M; Arnaud J; Jamin M; Schoehn G; Forterre P; Weissenhorn W; Renesto P
    PLoS One; 2011; 6(7):e21921. PubMed ID: 21760923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.