These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 36921039)

  • 21. Structure and dynamics of ESCRT-III membrane remodeling proteins by high-speed atomic force microscopy.
    Jukic N; Perrino AP; Redondo-Morata L; Scheuring S
    J Biol Chem; 2023 Apr; 299(4):104575. PubMed ID: 36870686
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electron cryotomography of ESCRT assemblies and dividing Sulfolobus cells suggests that spiraling filaments are involved in membrane scission.
    Dobro MJ; Samson RY; Yu Z; McCullough J; Ding HJ; Chong PL; Bell SD; Jensen GJ
    Mol Biol Cell; 2013 Aug; 24(15):2319-27. PubMed ID: 23761076
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coordinated binding of Vps4 to ESCRT-III drives membrane neck constriction during MVB vesicle formation.
    Adell MA; Vogel GF; Pakdel M; Müller M; Lindner H; Hess MW; Teis D
    J Cell Biol; 2014 Apr; 205(1):33-49. PubMed ID: 24711499
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular and structural basis of ESCRT-III recruitment to membranes during archaeal cell division.
    Samson RY; Obita T; Hodgson B; Shaw MK; Chong PL; Williams RL; Bell SD
    Mol Cell; 2011 Jan; 41(2):186-96. PubMed ID: 21255729
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modelling membrane reshaping by staged polymerization of ESCRT-III filaments.
    Jiang X; Harker-Kirschneck L; Vanhille-Campos C; Pfitzner AK; Lominadze E; Roux A; Baum B; Šarić A
    PLoS Comput Biol; 2022 Oct; 18(10):e1010586. PubMed ID: 36251703
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An ESCRT-III Polymerization Sequence Drives Membrane Deformation and Fission.
    Pfitzner AK; Mercier V; Jiang X; Moser von Filseck J; Baum B; Šarić A; Roux A
    Cell; 2020 Sep; 182(5):1140-1155.e18. PubMed ID: 32814015
    [TBL] [Abstract][Full Text] [Related]  

  • 27. VPS4 triggers constriction and cleavage of ESCRT-III helical filaments.
    Maity S; Caillat C; Miguet N; Sulbaran G; Effantin G; Schoehn G; Roos WH; Weissenhorn W
    Sci Adv; 2019 Apr; 5(4):eaau7198. PubMed ID: 30989108
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ESCRT-III and Vps4: a dynamic multipurpose tool for membrane budding and scission.
    Alonso Y Adell M; Migliano SM; Teis D
    FEBS J; 2016 Sep; 283(18):3288-302. PubMed ID: 26910595
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A role for the ESCRT system in cell division in archaea.
    Samson RY; Obita T; Freund SM; Williams RL; Bell SD
    Science; 2008 Dec; 322(5908):1710-3. PubMed ID: 19008417
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Principles of membrane remodeling by dynamic ESCRT-III polymers.
    Pfitzner AK; Moser von Filseck J; Roux A
    Trends Cell Biol; 2021 Oct; 31(10):856-868. PubMed ID: 33980463
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure and mechanism of the ESCRT pathway AAA+ ATPase Vps4.
    Han H; Hill CP
    Biochem Soc Trans; 2019 Feb; 47(1):37-45. PubMed ID: 30647138
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Asgard ESCRT-III and VPS4 reveal conserved chromatin binding properties of the ESCRT machinery.
    Nachmias D; Melnikov N; Zorea A; Sharon M; Yemini R; De-Picchoto Y; Tsirkas I; Aharoni A; Frohn B; Schwille P; Zarivach R; Mizrahi I; Elia N
    ISME J; 2023 Jan; 17(1):117-129. PubMed ID: 36221007
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Membrane scission by the ESCRT-III complex.
    Wollert T; Wunder C; Lippincott-Schwartz J; Hurley JH
    Nature; 2009 Mar; 458(7235):172-7. PubMed ID: 19234443
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural basis of protein translocation by the Vps4-Vta1 AAA ATPase.
    Monroe N; Han H; Shen PS; Sundquist WI; Hill CP
    Elife; 2017 Apr; 6():. PubMed ID: 28379137
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tracing back variations in archaeal ESCRT-based cell division to protein domain architectures.
    Frohn BP; Härtel T; Cox J; Schwille P
    PLoS One; 2022; 17(3):e0266395. PubMed ID: 35358274
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Asgard archaea shed light on the evolutionary origins of the eukaryotic ubiquitin-ESCRT machinery.
    Hatano T; Palani S; Papatziamou D; Salzer R; Souza DP; Tamarit D; Makwana M; Potter A; Haig A; Xu W; Townsend D; Rochester D; Bellini D; Hussain HMA; Ettema TJG; Löwe J; Baum B; Robinson NP; Balasubramanian M
    Nat Commun; 2022 Jun; 13(1):3398. PubMed ID: 35697693
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural Fine-Tuning of MIT-Interacting Motif 2 (MIM2) and Allosteric Regulation of ESCRT-III by Vps4 in Yeast.
    Kojima R; Obita T; Onoue K; Mizuguchi M
    J Mol Biol; 2016 Jun; 428(11):2392-2404. PubMed ID: 27075672
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural basis of CHMP2A-CHMP3 ESCRT-III polymer assembly and membrane cleavage.
    Azad K; Guilligay D; Boscheron C; Maity S; De Franceschi N; Sulbaran G; Effantin G; Wang H; Kleman JP; Bassereau P; Schoehn G; Roos WH; Desfosses A; Weissenhorn W
    Nat Struct Mol Biol; 2023 Jan; 30(1):81-90. PubMed ID: 36604498
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ATP-dependent force generation and membrane scission by ESCRT-III and Vps4.
    Schöneberg J; Pavlin MR; Yan S; Righini M; Lee IH; Carlson LA; Bahrami AH; Goldman DH; Ren X; Hummer G; Bustamante C; Hurley JH
    Science; 2018 Dec; 362(6421):1423-1428. PubMed ID: 30573630
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4.
    Obita T; Saksena S; Ghazi-Tabatabai S; Gill DJ; Perisic O; Emr SD; Williams RL
    Nature; 2007 Oct; 449(7163):735-9. PubMed ID: 17928861
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.