These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 36921080)

  • 1. Kinetics of Hydroxyl Radical Production from Oxygenation of Reduced Iron Minerals and Their Reactivity with Trichloroethene: Effects of Iron Amounts, Iron Species, and Sulfate Reducing Bacteria.
    You X; Liu S; Berns-Herrboldt EC; Dai C; Werth CJ
    Environ Sci Technol; 2023 Mar; 57(12):4892-4904. PubMed ID: 36921080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic models for hydroxyl radical production and contaminant removal during soil/sediment oxygenation.
    Zhang P; Liu J; Yu H; Cheng D; Liu H; Yuan S
    Water Res; 2023 Jul; 240():120071. PubMed ID: 37210971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation of trichloroethylene by the hydroxyl radicals produced from oxygenation of reduced nontronite.
    Liu X; Yuan S; Tong M; Liu D
    Water Res; 2017 Apr; 113():72-79. PubMed ID: 28199864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroxyl radical formation during oxygen-mediated oxidation of ferrous iron on mineral surface: Dependence on mineral identity.
    Chen N; Geng M; Huang D; Tan M; Li Z; Liu G; Zhu C; Fang G; Zhou D
    J Hazard Mater; 2022 Jul; 434():128861. PubMed ID: 35405609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of microbial trichloroethylene dechlorination [corrected] by Fe (III) reduction depends on Fe mineralogy: a batch study using the bioaugmentation culture KB-1.
    Paul L; Herrmann S; Koch CB; Philips J; Smolders E
    Water Res; 2013 May; 47(7):2543-54. PubMed ID: 23490101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms for Abiotic Dechlorination of Trichloroethene by Ferrous Minerals under Oxic and Anoxic Conditions in Natural Sediments.
    Schaefer CE; Ho P; Berns E; Werth C
    Environ Sci Technol; 2018 Dec; 52(23):13747-13755. PubMed ID: 30394724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abiotic dechlorination in the presence of ferrous minerals.
    Schaefer CE; Ho P; Berns E; Werth C
    J Contam Hydrol; 2021 Aug; 241():103839. PubMed ID: 34052750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transformation impacts of dissolved and solid phase Fe(II) on trichloroethylene (TCE) reduction in an iron-reducing bacteria (IRB) mixed column system: a mathematical model.
    Bae Y; Kim D; Cho HH; Singhal N; Park JW
    Water Res; 2012 Dec; 46(19):6391-8. PubMed ID: 23040563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cryptic Cycling of Complexes Containing Fe(III) and Organic Matter by Phototrophic Fe(II)-Oxidizing Bacteria.
    Peng C; Bryce C; Sundman A; Kappler A
    Appl Environ Microbiol; 2019 Apr; 85(8):. PubMed ID: 30796062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced effect of HAH on citric acid-chelated Fe(II)-catalyzed percarbonate for trichloroethene degradation.
    Fu X; Brusseau ML; Zang X; Lu S; Zhang X; Farooq U; Qiu Z; Sui Q
    Environ Sci Pollut Res Int; 2017 Nov; 24(31):24318-24326. PubMed ID: 28889360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidation of the interplay between Fe(II), Fe(III), and dopamine with relevance to iron solubilization and reactive oxygen species generation by catecholamines.
    Sun Y; Pham AN; Waite TD
    J Neurochem; 2016 Jun; 137(6):955-68. PubMed ID: 26991725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient degradation of TCE in groundwater using Pd and electro-generated H2 and O2: a shift in pathway from hydrodechlorination to oxidation in the presence of ferrous ions.
    Yuan S; Mao X; Alshawabkeh AN
    Environ Sci Technol; 2012 Mar; 46(6):3398-405. PubMed ID: 22315993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling and environmental implications of in situ formed biogenic Fe-Mn minerals induced by indigenous bacteria and oxygen perturbations for As(III) immobilization in groundwater.
    Zhao X; Xie Z; Liu T; Li P; Pei F; Wang L
    Sci Total Environ; 2023 Feb; 858(Pt 2):159884. PubMed ID: 36334665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The degradation of dissolved organic matter in black and odorous water by humic substance-mediated Fe(II)/Fe(III) cycle under redox fluctuation.
    Li H; Ding S; Song W; Wang X; Ding J; Lu J
    J Environ Manage; 2022 Nov; 321():115942. PubMed ID: 35985265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical Role of Mineral Fe(IV) Formation in Low Hydroxyl Radical Yields during Fe(II)-Bearing Clay Mineral Oxygenation.
    Yu C; Ji W; Li X; Yuan S; Zhang P; Pu S
    Environ Sci Technol; 2024 Jun; 58(22):9669-9678. PubMed ID: 38771965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shewanella oneidensis MR-1 dissimilatory reduction of ferrihydrite to highly enhance mineral transformation and reactive oxygen species production in redox-fluctuating environments.
    Yang L; Wu H; Zhao Y; Tan X; Wei Y; Guan Y; Huang G
    Chemosphere; 2024 Mar; 352():141364. PubMed ID: 38336034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trichloroethylene degradation by PVA-coated calcium peroxide nanoparticles in Fe(II)-based catalytic systems: enhanced performance by citric acid and nanoscale iron sulfide.
    Ali M; Shan A; Sun Y; Gu X; Lyu S; Zhou Y
    Environ Sci Pollut Res Int; 2021 Jan; 28(3):3121-3135. PubMed ID: 32902746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic Insight into Humic Acid-Enhanced Hydroxyl Radical Production from Fe(II)-Bearing Clay Mineral Oxygenation.
    Yu C; Zhang Y; Lu Y; Qian A; Zhang P; Cui Y; Yuan S
    Environ Sci Technol; 2021 Oct; 55(19):13366-13375. PubMed ID: 34551244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of trichloroethylene in aqueous solution by sodium percarbonate activated with Fe(II)-citric acid complex in the presence of surfactant Tween-80.
    Lyu Y; Lyu S; Tang P; Jiang W; Sun Y; Li M; Sui Q
    Chemosphere; 2020 Oct; 257():127223. PubMed ID: 32534295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanism and applicability of in situ oxidation of trichloroethylene with Fenton's reagent.
    Chen G; Hoag GE; Chedda P; Nadim F; Woody BA; Dobbs GM
    J Hazard Mater; 2001 Oct; 87(1-3):171-86. PubMed ID: 11566408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.