These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 36921149)

  • 1. Origin of Superlinear Power Dependence of Reaction Rates in Plasmon-Driven Photocatalysis: A Case Study of Reductive Nitrothiophenol Coupling Reactions.
    Chen K; Wang H
    Nano Lett; 2023 Apr; 23(7):2870-2876. PubMed ID: 36921149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmon-Enhanced Catalysis: Distinguishing Thermal and Nonthermal Effects.
    Zhang X; Li X; Reish ME; Zhang D; Su NQ; Gutiérrez Y; Moreno F; Yang W; Everitt HO; Liu J
    Nano Lett; 2018 Mar; 18(3):1714-1723. PubMed ID: 29438619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmon-driven oxidative coupling of aniline-derivative adsorbates: A comparative study of para-ethynylaniline and para-mercaptoaniline.
    Chen K; Wang H
    J Chem Phys; 2022 May; 156(20):204705. PubMed ID: 35649839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiating Plasmon-Enhanced Chemical Reactions on AgPd Hollow Nanoplates through Surface-Enhanced Raman Spectroscopy.
    Jiao S; Dai K; Besteiro LV; Gao H; Chen X; Wang W; Zhang Y; Liu C; Pérez-Juste I; Pérez-Juste J; Pastoriza-Santos I; Zheng G
    ACS Catal; 2024 May; 14(9):6799-6806. PubMed ID: 38721378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The importance of plasmonic heating for the plasmon-driven photodimerization of 4-nitrothiophenol.
    Sarhan RM; Koopman W; Schuetz R; Schmid T; Liebig F; Koetz J; Bargheer M
    Sci Rep; 2019 Feb; 9(1):3060. PubMed ID: 30816134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Silica Supports on Plasmonic Heating of Molecular Adsorbates as Measured by Ultrafast Surface-Enhanced Raman Thermometry.
    Keller EL; Kang H; Haynes CL; Frontiera RR
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40577-40584. PubMed ID: 30427654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast Nanoscale Raman Thermometry Proves Heating Is Not a Primary Mechanism for Plasmon-Driven Photocatalysis.
    Keller EL; Frontiera RR
    ACS Nano; 2018 Jun; 12(6):5848-5855. PubMed ID: 29883086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decoding the kinetic limitations of plasmon catalysis: the case of 4-nitrothiophenol dimerization.
    Koopman W; Sarhan RM; Stete F; Schmitt CNZ; Bargheer M
    Nanoscale; 2020 Dec; 12(48):24411-24418. PubMed ID: 33300518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ SERS monitoring of plasmon-driven catalytic reaction on gap-controlled Ag nanoparticle arrays under 785 nm irradiation.
    Liu Y; Zhang L; Liu X; Zhang Y; Yan Y; Zhao Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 270():120803. PubMed ID: 35007906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmon-Driven Photocatalysis Leads to Products Known from E-beam and X-ray-Induced Surface Chemistry.
    Szczerbiński J; Gyr L; Kaeslin J; Zenobi R
    Nano Lett; 2018 Nov; 18(11):6740-6749. PubMed ID: 30277787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reducing the photocatalysis induced by hot electrons of plasmonic nanoparticles due to tradeoff of photothermal heating.
    Mahmoud MA
    Phys Chem Chem Phys; 2017 Dec; 19(47):32016-32023. PubMed ID: 29177303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal-effect dominated plasmonic catalysis on silver nanoislands.
    Kong T; Kang B; Wang W; Deckert-Gaudig T; Zhang Z; Deckert V
    Nanoscale; 2024 Jun; 16(22):10745-10750. PubMed ID: 38738933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-Situ Monitoring the SERS Spectra of para-Aminothiophenol Adsorbed on Plasmon-Tunable Au@Ag Core-Shell Nanostars.
    Ke Y; Chen B; Hu M; Zhou N; Huang Z; Meng G
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying Photothermal and Hot Charge Carrier Effects in Plasmon-Driven Nanoparticle Syntheses.
    Kamarudheen R; Castellanos GW; Kamp LPJ; Clercx HJH; Baldi A
    ACS Nano; 2018 Aug; 12(8):8447-8455. PubMed ID: 30071160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying Hot Electron Energy Contributions in Plasmonic Photocatalysis Using Electrochemical Surface-Enhanced Raman Spectroscopy.
    Yu L; Du A; Yang L; Hu Y; Xie W
    J Phys Chem Lett; 2022 Jun; 13(24):5495-5500. PubMed ID: 35695751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible Association of Nitro Compounds with p-Nitrothiophenol Modified on Ag Nanoparticles/Graphene Oxide Nanocomposites through Plasmon Mediated Photochemical Reaction.
    Lin TW; Tasi TT; Chang PL; Cheng HY
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8315-22. PubMed ID: 26977529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics and Mechanism of Plasmon-Driven Dehalogenation Reaction of Brominated Purine Nucleobases on Ag and Au.
    Dutta A; Schürmann R; Kogikoski S; Mueller NS; Reich S; Bald I
    ACS Catal; 2021 Jul; 11(13):8370-8381. PubMed ID: 34239772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic Photocatalysis with Nonthermalized Hot Carriers.
    Wu S; Chen Y; Gao S
    Phys Rev Lett; 2022 Aug; 129(8):086801. PubMed ID: 36053692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon-Mediated Chemical Reactions on Nanostructures Unveiled by Surface-Enhanced Raman Spectroscopy.
    Zhan C; Chen XJ; Huang YF; Wu DY; Tian ZQ
    Acc Chem Res; 2019 Oct; 52(10):2784-2792. PubMed ID: 31532621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Adsorption Orientation in Surface Plasmon-Driven Coupling Reactions Studied by Tip-Enhanced Raman Spectroscopy.
    Sun JJ; Su HS; Yue HL; Huang SC; Huang TX; Hu S; Sartin MM; Cheng J; Ren B
    J Phys Chem Lett; 2019 May; 10(10):2306-2312. PubMed ID: 31013094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.