These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 36921255)
1. Definitive Screening Designs to Optimize Library-Free DIA-MS Identification and Quantification of Neuropeptides. Phetsanthad A; Carr AV; Fields L; Li L J Proteome Res; 2023 May; 22(5):1510-1519. PubMed ID: 36921255 [TBL] [Abstract][Full Text] [Related]
2. Reproducibility, Specificity and Accuracy of Relative Quantification Using Spectral Library-based Data-independent Acquisition. Barkovits K; Pacharra S; Pfeiffer K; Steinbach S; Eisenacher M; Marcus K; Uszkoreit J Mol Cell Proteomics; 2020 Jan; 19(1):181-197. PubMed ID: 31699904 [TBL] [Abstract][Full Text] [Related]
3. A crustacean neuropeptide spectral library for data-independent acquisition (DIA) mass spectrometry applications. Fields L; Ma M; DeLaney K; Phetsanthad A; Li L Proteomics; 2024 Aug; 24(15):e2300285. PubMed ID: 38171828 [TBL] [Abstract][Full Text] [Related]
4. Characterization of Cerebrospinal Fluid via Data-Independent Acquisition Mass Spectrometry. Barkovits K; Linden A; Galozzi S; Schilde L; Pacharra S; Mollenhauer B; Stoepel N; Steinbach S; May C; Uszkoreit J; Eisenacher M; Marcus K J Proteome Res; 2018 Oct; 17(10):3418-3430. PubMed ID: 30207155 [TBL] [Abstract][Full Text] [Related]
6. Sensitive Immunopeptidomics by Leveraging Available Large-Scale Multi-HLA Spectral Libraries, Data-Independent Acquisition, and MS/MS Prediction. Pak H; Michaux J; Huber F; Chong C; Stevenson BJ; Müller M; Coukos G; Bassani-Sternberg M Mol Cell Proteomics; 2021; 20():100080. PubMed ID: 33845167 [TBL] [Abstract][Full Text] [Related]
7. High throughput and accurate serum proteome profiling by integrated sample preparation technology and single-run data independent mass spectrometry analysis. Lin L; Zheng J; Yu Q; Chen W; Xing J; Chen C; Tian R J Proteomics; 2018 Mar; 174():9-16. PubMed ID: 29278786 [TBL] [Abstract][Full Text] [Related]
8. Removing the Hidden Data Dependency of DIA with Predicted Spectral Libraries. Van Puyvelde B; Willems S; Gabriels R; Daled S; De Clerck L; Vande Casteele S; Staes A; Impens F; Deforce D; Martens L; Degroeve S; Dhaenens M Proteomics; 2020 Feb; 20(3-4):e1900306. PubMed ID: 31981311 [TBL] [Abstract][Full Text] [Related]
9. Acquiring and Analyzing Data Independent Acquisition Proteomics Experiments without Spectrum Libraries. Pino LK; Just SC; MacCoss MJ; Searle BC Mol Cell Proteomics; 2020 Jul; 19(7):1088-1103. PubMed ID: 32312845 [TBL] [Abstract][Full Text] [Related]
10. In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics. Yang Y; Liu X; Shen C; Lin Y; Yang P; Qiao L Nat Commun; 2020 Jan; 11(1):146. PubMed ID: 31919359 [TBL] [Abstract][Full Text] [Related]
11. Computational Optimization of Spectral Library Size Improves DIA-MS Proteome Coverage and Applications to 15 Tumors. Ge W; Liang X; Zhang F; Hu Y; Xu L; Xiang N; Sun R; Liu W; Xue Z; Yi X; Sun Y; Wang B; Zhu J; Lu C; Zhan X; Chen L; Wu Y; Zheng Z; Gong W; Wu Q; Yu J; Ye Z; Teng X; Huang S; Zheng S; Liu T; Yuan C; Guo T J Proteome Res; 2021 Dec; 20(12):5392-5401. PubMed ID: 34748352 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of DDA Library-Free Strategies for Phosphoproteomics and Ubiquitinomics Data-Independent Acquisition Data. Wen C; Wu X; Lin G; Yan W; Gan G; Xu X; Chen XY; Chen X; Liu X; Fu G; Zhong CQ J Proteome Res; 2023 Jul; 22(7):2232-2245. PubMed ID: 37256709 [TBL] [Abstract][Full Text] [Related]
13. Neuropeptidomics: Comparison of parallel reaction monitoring and data-independent acquisition for the analysis of neuropeptides using high-resolution mass spectrometry. Saidi M; Kamali S; Beaudry F Biomed Chromatogr; 2019 Jul; 33(7):e4523. PubMed ID: 30821847 [TBL] [Abstract][Full Text] [Related]
14. PASS-DIA: A Data-Independent Acquisition Approach for Discovery Studies. Mun DG; Renuse S; Saraswat M; Madugundu A; Udainiya S; Kim H; Park SR; Zhao H; Nirujogi RS; Na CH; Kannan N; Yates JR; Lee SW; Pandey A Anal Chem; 2020 Nov; 92(21):14466-14475. PubMed ID: 33079518 [TBL] [Abstract][Full Text] [Related]
15. Comprehensive Prostate Fluid-Based Spectral Libraries for Enhanced Protein Detection in Urine. Ha A; Khoo A; Ignatchenko V; Khan S; Waas M; Vesprini D; Liu SK; Nyalwidhe JO; Semmes OJ; Boutros PC; Kislinger T J Proteome Res; 2024 May; 23(5):1768-1778. PubMed ID: 38580319 [TBL] [Abstract][Full Text] [Related]
16. A comprehensive spectral assay library to quantify the Escherichia coli proteome by DIA/SWATH-MS. Midha MK; Kusebauch U; Shteynberg D; Kapil C; Bader SL; Reddy PJ; Campbell DS; Baliga NS; Moritz RL Sci Data; 2020 Nov; 7(1):389. PubMed ID: 33184295 [TBL] [Abstract][Full Text] [Related]
18. A data-independent acquisition (DIA)-based quantification workflow for proteome analysis of 5000 cells. Jiang N; Gao Y; Xu J; Luo F; Zhang X; Chen R J Pharm Biomed Anal; 2022 Jul; 216():114795. PubMed ID: 35489320 [TBL] [Abstract][Full Text] [Related]
19. Human follicular fluid proteomic and peptidomic composition quantitative studies by SWATH-MS methodology. Applicability of high pH RP-HPLC fractionation. Lewandowska AE; Macur K; Czaplewska P; Liss J; Łukaszuk K; Ołdziej S J Proteomics; 2019 Jan; 191():131-142. PubMed ID: 29530678 [TBL] [Abstract][Full Text] [Related]
20. Extensive and Accurate Benchmarking of DIA Acquisition Methods and Software Tools Using a Complex Proteomic Standard. Gotti C; Roux-Dalvai F; Joly-Beauparlant C; Mangnier L; Leclercq M; Droit A J Proteome Res; 2021 Oct; 20(10):4801-4814. PubMed ID: 34472865 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]