These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36921266)

  • 21. Body temperature during hibernation is highly correlated with a decrease in circulating innate immune cells in the brown bear (Ursus arctos): a common feature among hibernators?
    Sahdo B; Evans AL; Arnemo JM; Fröbert O; Särndahl E; Blanc S
    Int J Med Sci; 2013; 10(5):508-14. PubMed ID: 23532623
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sulfide metabolism and the mechanism of torpor.
    Jensen BS; Fago A
    J Exp Biol; 2021 Sep; 224(17):. PubMed ID: 34487173
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Arousal from Torpor Increases Oxidative Damage in the Hibernating Thirteen-Lined Ground Squirrel (
    Duffy BM; Staples JF
    Physiol Biochem Zool; 2022; 95(3):229-238. PubMed ID: 35443147
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multi-tissue profile of NFκB pathway regulation during mammalian hibernation.
    Hadj-Moussa H; Wijenayake S; Storey KB
    Comp Biochem Physiol B Biochem Mol Biol; 2020; 246-247():110460. PubMed ID: 32445797
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of the SIRT family of NAD+-dependent protein deacetylases in the context of a mammalian model of hibernation, the thirteen-lined ground squirrel.
    Rouble AN; Storey KB
    Cryobiology; 2015 Oct; 71(2):334-43. PubMed ID: 26277038
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Be cool to be far: Exploiting hibernation for space exploration.
    Cerri M; Hitrec T; Luppi M; Amici R
    Neurosci Biobehav Rev; 2021 Sep; 128():218-232. PubMed ID: 34144115
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neonatal tolerance to hypoxia: a comparative-physiological approach.
    Singer D
    Comp Biochem Physiol A Mol Integr Physiol; 1999 Jul; 123(3):221-34. PubMed ID: 10501017
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Global DNA modifications suppress transcription in brown adipose tissue during hibernation.
    Biggar Y; Storey KB
    Cryobiology; 2014 Oct; 69(2):333-8. PubMed ID: 25192827
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mitochondrial metabolism in hibernation and daily torpor: a review.
    Staples JF; Brown JC
    J Comp Physiol B; 2008 Sep; 178(7):811-27. PubMed ID: 18551297
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolic hormone FGF21 is induced in ground squirrels during hibernation but its overexpression is not sufficient to cause torpor.
    Nelson BT; Ding X; Boney-Montoya J; Gerard RD; Kliewer SA; Andrews MT
    PLoS One; 2013; 8(1):e53574. PubMed ID: 23301087
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Season primes the brain in an arctic hibernator to facilitate entrance into torpor mediated by adenosine A(1) receptors.
    Jinka TR; Tøien Ø; Drew KL
    J Neurosci; 2011 Jul; 31(30):10752-8. PubMed ID: 21795527
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Central nervous system regulation of mammalian hibernation: implications for metabolic suppression and ischemia tolerance.
    Drew KL; Buck CL; Barnes BM; Christian SL; Rasley BT; Harris MB
    J Neurochem; 2007 Sep; 102(6):1713-1726. PubMed ID: 17555547
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of succinate dehydrogenase and oxaloacetate in metabolic suppression during hibernation and arousal.
    Armstrong C; Staples JF
    J Comp Physiol B; 2010 Jun; 180(5):775-83. PubMed ID: 20112024
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thrifty Females, Frisky Males: Winter Energetics of Hibernating Bats from a Cold Climate.
    Czenze ZJ; Jonasson KA; Willis CKR
    Physiol Biochem Zool; 2017; 90(4):502-511. PubMed ID: 28641050
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heterothermy in elephant shrews, Elephantulus spp. (Macroscelidea): daily torpor or hibernation?
    Lovegrove BG; Raman J; Perrin MR
    J Comp Physiol B; 2001 Feb; 171(1):1-10. PubMed ID: 11263721
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Torpor patterns, arousal rates, and temporal organization of torpor entry in wildtype and UCP1-ablated mice.
    Oelkrug R; Heldmaier G; Meyer CW
    J Comp Physiol B; 2011 Jan; 181(1):137-45. PubMed ID: 20680295
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolic suppression in mammalian hibernation: the role of mitochondria.
    Staples JF
    J Exp Biol; 2014 Jun; 217(Pt 12):2032-6. PubMed ID: 24920833
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Group hibernation does not reduce energetic costs of young yellow-bellied marmots.
    Armitage KB; Woods BC
    Physiol Biochem Zool; 2003; 76(6):888-98. PubMed ID: 14988804
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermoregulation in hibernating mammals: The role of the "thyroid hormones system".
    Frare C; Williams CT; Drew KL
    Mol Cell Endocrinol; 2021 Jan; 519():111054. PubMed ID: 33035626
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nature's fat-burning machine: brown adipose tissue in a hibernating mammal.
    Ballinger MA; Andrews MT
    J Exp Biol; 2018 Mar; 221(Pt Suppl 1):. PubMed ID: 29514878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.