These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36921272)

  • 1. Thermal Stability of Contractile Proteins in Bat Wing Muscles Explains Differences in Temperature Dependence of Whole-Muscle Shortening Velocity.
    Rummel AD; Swartz SM; Marsh RL
    Physiol Biochem Zool; 2023; 96(2):100-105. PubMed ID: 36921272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of thermal sensitivities of wing muscle contractile properties from a temperate and tropical bat species.
    Rummel AD; Swartz SM; Marsh RL; Faure PA
    J Exp Biol; 2022 Jun; 225(11):. PubMed ID: 35546297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A proximal-distal difference in bat wing muscle thermal sensitivity parallels a difference in operating temperatures along the wing.
    Rummel AD; Swartz SM; Marsh RL
    Proc Biol Sci; 2021 May; 288(1950):20210009. PubMed ID: 33975475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low thermal dependence of the contractile properties of a wing muscle in the bat
    Rummel AD; Swartz SM; Marsh RL
    J Exp Biol; 2018 Jul; 221(Pt 14):. PubMed ID: 29844201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Warm bodies, cool wings: regional heterothermy in flying bats.
    Rummel AD; Swartz SM; Marsh RL
    Biol Lett; 2019 Sep; 15(9):20190530. PubMed ID: 31506035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Speed-dependent modulation of wing muscle recruitment intensity and kinematics in two bat species.
    Konow N; Cheney JA; Roberts TJ; Iriarte-Díaz J; Breuer KS; Waldman JRS; Swartz SM
    J Exp Biol; 2017 May; 220(Pt 10):1820-1829. PubMed ID: 28235906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Behavior and muscle performance in heterothermic bats.
    Choi IH; Cho Y; Oh YK; Jung NP; Shin HC
    Physiol Zool; 1998; 71(3):257-66. PubMed ID: 9634172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cryoenzymic studies on an organized system: myofibrillar ATPases and shortening.
    Lionne C; Stehle R; Travers F; Barman T
    Biochemistry; 1999 Jun; 38(26):8512-20. PubMed ID: 10387098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maximum velocity of shortening related to myosin isoform composition in frog skeletal muscle fibres.
    Edman KA; Reggiani C; Schiaffino S; te Kronnie G
    J Physiol; 1988 Jan; 395():679-94. PubMed ID: 2970539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical responses to temperature in the contractile protein complex of striped bass Morone saxatilis.
    Moerland TS; Sidell BD
    J Exp Zool; 1986 Jun; 238(3):287-95. PubMed ID: 2941518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship among fibre type, myosin ATPase activity and contractile properties.
    Maxwell LC; Faulkner JA; Murphy RA
    Histochem J; 1982 Nov; 14(6):981-97. PubMed ID: 6217171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptations for extremely high muscular power output: why do muscles that operate at intermediate cycle frequencies generate the highest powers?
    Askew GN
    J Muscle Res Cell Motil; 2023 Jun; 44(2):107-114. PubMed ID: 36627504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of spaceflight on skeletal muscle: mechanical properties and myosin isoform content of a slow muscle.
    Caiozzo VJ; Baker MJ; Herrick RE; Tao M; Baldwin KM
    J Appl Physiol (1985); 1994 Apr; 76(4):1764-73. PubMed ID: 8045858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane muscle function in the compliant wings of bats.
    Cheney JA; Konow N; Middleton KM; Breuer KS; Roberts TJ; Giblin EL; Swartz SM
    Bioinspir Biomim; 2014 Jun; 9(2):025007. PubMed ID: 24855069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Switches in fish myosin genes induced by environment temperature in muscle of the carp.
    Goldspink G; Turay L; Hansen E; Ennion S; Gerlach G
    Symp Soc Exp Biol; 1992; 46():139-49. PubMed ID: 1341032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle mechanics: adaptations with exercise-training.
    Fitts RH; Widrick JJ
    Exerc Sport Sci Rev; 1996; 24():427-73. PubMed ID: 8744258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATPase activity of myosin correlated with speed of muscle shortening.
    Bárány M
    J Gen Physiol; 1967 Jul; 50(6):Suppl:197-218. PubMed ID: 4227924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in temperature dependence of muscle contractile properties and myofibrillar ATPase activity in a cold-temperature fish.
    Johnston IA; Sidell BD
    J Exp Biol; 1984 Jul; 111():179-89. PubMed ID: 6238119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscle function in avian flight: achieving power and control.
    Biewener AA
    Philos Trans R Soc Lond B Biol Sci; 2011 May; 366(1570):1496-506. PubMed ID: 21502121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shortening velocity and myosin and myofibrillar ATPase activity related to myosin isoenzyme composition during postnatal development in rat myocardium.
    Cappelli V; Bottinelli R; Poggesi C; Moggio R; Reggiani C
    Circ Res; 1989 Aug; 65(2):446-57. PubMed ID: 2526695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.