These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 36921272)
21. Trapped in the darkness of the night: thermal and energetic constraints of daylight flight in bats. Voigt CC; Lewanzik D Proc Biol Sci; 2011 Aug; 278(1716):2311-7. PubMed ID: 21208959 [TBL] [Abstract][Full Text] [Related]
22. Does phosphate release limit the ATPases of soleus myofibrils? Evidence that (A)M. ADP.Pi states predominate on the cross-bridge cycle. Iorga B; Candau R; Travers F; Barman T; Lionne C J Muscle Res Cell Motil; 2004; 25(4-5):367-78. PubMed ID: 15548866 [TBL] [Abstract][Full Text] [Related]
23. Very low force-generating ability and unusually high temperature dependency in hummingbird flight muscle fibers. Reiser PJ; Welch KC; Suarez RK; Altshuler DL J Exp Biol; 2013 Jun; 216(Pt 12):2247-56. PubMed ID: 23580719 [TBL] [Abstract][Full Text] [Related]
24. Diversity in the organization of elastin bundles and intramembranous muscles in bat wings. Cheney JA; Allen JJ; Swartz SM J Anat; 2017 Apr; 230(4):510-523. PubMed ID: 28070887 [TBL] [Abstract][Full Text] [Related]
25. Muscle fatigue with prolonged exercise: contractile and biochemical alterations. Fitts RH; Courtright JB; Kim DH; Witzmann FA Am J Physiol; 1982 Jan; 242(1):C65-73. PubMed ID: 6120654 [TBL] [Abstract][Full Text] [Related]
26. Flight performance and wing morphology in the bat Carollia perspicillata: biophysical models and energetics. Carneiro LO; Mellado B; Nogueira MR; Cruz-Neto APD; Monteiro LR Integr Zool; 2023 Sep; 18(5):876-890. PubMed ID: 36610047 [TBL] [Abstract][Full Text] [Related]
27. Plasticity of human skeletal muscle with special reference to effects of physical training on enzyme levels of the NADH shuttles and phenotypic expression of slow and fast myofibrillar proteins. Schantz PG Acta Physiol Scand Suppl; 1986; 558():1-62. PubMed ID: 2950727 [TBL] [Abstract][Full Text] [Related]
28. Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles. Swynghedauw B Physiol Rev; 1986 Jul; 66(3):710-71. PubMed ID: 2942954 [TBL] [Abstract][Full Text] [Related]
29. Increase in muscle power is associated with myofibrillar ATPase adaptations during resistance training. Philippe AG; Lionne C; Sanchez AMJ; Pagano AF; Candau R Exp Physiol; 2019 Aug; 104(8):1274-1285. PubMed ID: 31168842 [TBL] [Abstract][Full Text] [Related]
30. Temperature dependence of speed of actin filaments propelled by slow and fast skeletal myosin isoforms. Rossi R; Maffei M; Bottinelli R; Canepari M J Appl Physiol (1985); 2005 Dec; 99(6):2239-45. PubMed ID: 16099894 [TBL] [Abstract][Full Text] [Related]
31. Power output by an asynchronous flight muscle from a beetle. Josephson RK; Malamud JG; Stokes DR J Exp Biol; 2000 Sep; 203(Pt 17):2667-89. PubMed ID: 10934007 [TBL] [Abstract][Full Text] [Related]
32. Co-ordinated expression of contractile and non-contractile features of control equine muscle fibre types characterised by immunostaining of myosin heavy chains. Quiroz-Rothe E; Rivero JL Histochem Cell Biol; 2001 Oct; 116(4):299-312. PubMed ID: 11702188 [TBL] [Abstract][Full Text] [Related]
33. Characterization of the effect of pH on the excitation-contraction coupling system of canine masseter muscle. Okabe E; Kohno H; Kato Y; Odajima C; Ito H Jpn J Pharmacol; 1985 Mar; 37(3):277-83. PubMed ID: 3158768 [TBL] [Abstract][Full Text] [Related]
34. Ontogeny of catabolic and morphological properties of skeletal muscle of the red-winged blackbird (Agelaius phoeniceus). Olson JM J Comp Physiol B; 2001 Oct; 171(7):527-42. PubMed ID: 11686611 [TBL] [Abstract][Full Text] [Related]
35. The broad range of contractile behaviour of the avian pectoralis: functional and evolutionary implications. Jackson BE; Tobalske BW; Dial KP J Exp Biol; 2011 Jul; 214(Pt 14):2354-61. PubMed ID: 21697427 [TBL] [Abstract][Full Text] [Related]
36. Isometric contractile properties and velocity of shortening during avian myogenesis. Reiser PJ; Stokes BT; Rall JA Am J Physiol; 1982 Sep; 243(3):C177-83. PubMed ID: 6214193 [TBL] [Abstract][Full Text] [Related]
37. Deactivation rate and shortening velocity as determinants of contractile frequency. Marsh RL Am J Physiol; 1990 Aug; 259(2 Pt 2):R223-30. PubMed ID: 2201216 [TBL] [Abstract][Full Text] [Related]
38. Thermal effects on motor control and in vitro muscle dynamics of the ballistic tongue apparatus in chameleons. Anderson CV; Deban SM J Exp Biol; 2012 Dec; 215(Pt 24):4345-57. PubMed ID: 23125336 [TBL] [Abstract][Full Text] [Related]
39. Why choose myofibrils to study muscle myosin ATPase? Lionne C; Iorga B; Candau R; Travers F J Muscle Res Cell Motil; 2003; 24(2-3):139-48. PubMed ID: 14609025 [TBL] [Abstract][Full Text] [Related]
40. Temperature dependence of mammalian muscle contractions and ATPase activities. Stein RB; Gordon T; Shriver J Biophys J; 1982 Nov; 40(2):97-107. PubMed ID: 6216923 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]