These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36921294)

  • 21. Temperature-Dependent Electrochromic Devices for Energy-Saving Dual-Mode Displays.
    Wu W; Fang H; Wu L; Ma H; Wang H
    ACS Appl Mater Interfaces; 2023 Jan; 15(3):4113-4121. PubMed ID: 36642933
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Advances in electrochromic device technology through the exploitation of nanophotonic and nanoplasmonic effects.
    Hopmann E; Zhang W; Li H; Elezzabi AY
    Nanophotonics; 2023 Feb; 12(4):637-657. PubMed ID: 36844468
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An
    Hua C; Liu K; Wu Y; Xu W; Zhang J; Wang Z; Liu K; Fang Y
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):49500-49508. PubMed ID: 34612639
    [TBL] [Abstract][Full Text] [Related]  

  • 24. User-Customized, Multicolor, Transparent Electrochemical Displays Based on Oxidatively Tuned Electrochromic Ion Gels.
    Oh H; Lee JK; Kim YM; Yun TY; Jeong U; Moon HC
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):45959-45968. PubMed ID: 31724389
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-Performance Black Copolymers Enabling Full Spectrum Control in Electrochromic Devices.
    Chen D; Tong Z; Rao Q; Liu X; Meng H; Huang W
    Nat Commun; 2024 Sep; 15(1):8457. PubMed ID: 39349468
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fast-Switching Vis-IR Electrochromic Covalent Organic Frameworks.
    Bessinger D; Muggli K; Beetz M; Auras F; Bein T
    J Am Chem Soc; 2021 May; 143(19):7351-7357. PubMed ID: 33724793
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Double-Sided Electrochromic Device Based on Metal-Organic Frameworks.
    Mjejri I; Doherty CM; Rubio-Martinez M; Drisko GL; Rougier A
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):39930-39934. PubMed ID: 29043775
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrogen-Bonded Organic Framework-Polyoxometalate-Based System for Electrochromic Devices.
    Wang SM; Jin YH; Zhou L; Wang KH; Kim HJ; Liu L; Kim E; Han Z
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):56242-56252. PubMed ID: 37976415
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interfacial Coordination Nanosheet Based on Nonconjugated Three-Arm Terpyridine: A Highly Color-Efficient Electrochromic Material to Converge Fast Switching with Long Optical Memory.
    Roy S; Chakraborty C
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35181-35192. PubMed ID: 32657568
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High optical switching speed and flexible electrochromic display based on WO3 nanoparticles with ZnO nanorod arrays' supported electrode.
    Wang M; Fang G; Yuan L; Huang H; Sun Z; Liu N; Xia S; Zhao X
    Nanotechnology; 2009 May; 20(18):185304. PubMed ID: 19420611
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Niobium Tungsten Oxides for Electrochromic Devices with Long-Term Stability.
    Wu C; Shao Z; Zhai W; Zhang X; Zhang C; Zhu C; Yu Y; Liu W
    ACS Nano; 2022 Feb; 16(2):2621-2628. PubMed ID: 35081308
    [TBL] [Abstract][Full Text] [Related]  

  • 32. C-Rich Carbon Nitride Conjugated Polymer Enabling Ion-Migration-Induced Precise Electrochromic Display.
    Liu T; Tang X; Zeng Y; Li Y; Jing C; Ling F; Yang H; Zhou X
    ACS Appl Mater Interfaces; 2023 Dec; ():. PubMed ID: 38050907
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasmochromic Nanocavity Dynamic Light Color Switching.
    Hopmann E; Elezzabi AY
    Nano Lett; 2020 Mar; 20(3):1876-1882. PubMed ID: 32049542
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Resonant-mode engineering for additive reflective structural colors with high brightness and high color purity.
    Kwak H; Jung I; Kim D; Ju S; Choi S; Kang C; Kim H; Baac HW; Ok JG; Lee KT
    Sci Rep; 2024 Jun; 14(1):13694. PubMed ID: 38871983
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Amorphous Mixed-Vanadium-Tungsten Oxide Films as Optically Passive Ion Storage Materials for Solid-State Near-Infrared Electrochromic Devices.
    Wang J; Zhou Y; Zhao W; Niu Y; Mao Y; Cheng W
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):7120-7128. PubMed ID: 36716357
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dual-Function Electrochromic Supercapacitors Displaying Real-Time Capacity in Color.
    Yun TY; Li X; Kim SH; Moon HC
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):43993-43999. PubMed ID: 30456943
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Voltage-Tunable Multicolor, Sub-1.5 V, Flexible Electrochromic Devices Based on Ion Gels.
    Oh H; Seo DG; Yun TY; Kim CY; Moon HC
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7658-7665. PubMed ID: 28134507
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solution-Processed Interfacial PEDOT:PSS Assembly into Porous Tungsten Molybdenum Oxide Nanocomposite Films for Electrochromic Applications.
    Li H; McRae L; Elezzabi AY
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):10520-10527. PubMed ID: 29508986
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A multi-chromic supercapacitor of high coloration efficiency integrating a MOF-derived V
    Dewan A; Narayanan R; Thotiyl MO
    Nanoscale; 2022 Dec; 14(46):17372-17384. PubMed ID: 36382617
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Towards full-colour tunability of inorganic electrochromic devices using ultracompact fabry-perot nanocavities.
    Wang Z; Wang X; Cong S; Chen J; Sun H; Chen Z; Song G; Geng F; Chen Q; Zhao Z
    Nat Commun; 2020 Jan; 11(1):302. PubMed ID: 31949150
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.