These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36921471)

  • 1. Catalytic mechanism of N-containing biochar on volatile-biochar interaction for the same origin pyrolysis.
    Sun Z; Yao D; Guo H; Zhu H; Hua W; Yuan Q; Zhang L; Fan Q; Yi B
    J Environ Manage; 2023 Jun; 336():117710. PubMed ID: 36921471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Biochar Addition on Nitrogen Transformation during Copyrolysis of Algae and Lignocellulosic Biomass.
    Chen W; Yang H; Chen Y; Li K; Xia M; Chen H
    Environ Sci Technol; 2018 Aug; 52(16):9514-9521. PubMed ID: 30028949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Urea impregnation into fungus pretreated corn stover to perform pyrolysis for production of nitrogen-containing bio-oil and nitrogen-doped biochar.
    Sun Z; Liu S; Xu Y; Lu J; Shi H; Li S; Luo C; Dong Q
    Bioresour Technol; 2023 May; 376():128921. PubMed ID: 36934905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated harvest of phenolic monomers and hydrogen through catalytic pyrolysis of biomass over nanocellulose derived biochar catalyst.
    Wang C; Lei H; Zhao Y; Qian M; Kong X; Mateo W; Zou R; Ruan R
    Bioresour Technol; 2021 Jan; 320(Pt A):124352. PubMed ID: 33166882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass.
    Li Y; Xing B; Ding Y; Han X; Wang S
    Bioresour Technol; 2020 Sep; 312():123614. PubMed ID: 32517889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic mechanism of nitrogen-doped biochar under different pyrolysis temperatures: The crucial roles of nitrogen incorporation and carbon configuration.
    Wan Y; Hu Y; Zhou W
    Sci Total Environ; 2022 Apr; 816():151502. PubMed ID: 34752876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning prediction of higher heating value of biochar based on biomass characteristics and pyrolysis conditions.
    Wang M; Xie Y; Gao Y; Huang X; Chen W
    Bioresour Technol; 2024 Mar; 395():130364. PubMed ID: 38262543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrogen containing functional groups of biochar: An overview.
    Leng L; Xu S; Liu R; Yu T; Zhuo X; Leng S; Xiong Q; Huang H
    Bioresour Technol; 2020 Feb; 298():122286. PubMed ID: 31690478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An overview of the effect of pyrolysis process parameters on biochar stability.
    Leng L; Huang H
    Bioresour Technol; 2018 Dec; 270():627-642. PubMed ID: 30220436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lignin-rich biomass of cotton by-products for biorefineries via pyrolysis.
    Chen J; Liang J; Wu S
    Bioresour Technol; 2016 Oct; 218():402-9. PubMed ID: 27393830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of Bromate by Cobalt-Impregnated Biochar Fabricated via Pyrolysis of Lignin Using CO
    Cho DW; Kwon G; Ok YS; Kwon EE; Song H
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13142-13150. PubMed ID: 28362484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of the lignin-/cellulose-derived char with volatiles of varied origin: Part of the process for evolution of products in pyrolysis.
    Chen Y; Li C; Zhang L; Chen Q; Zhang S; Xiang J; Hu S; Wang Y; Hu X
    Chemosphere; 2023 Sep; 336():139248. PubMed ID: 37330062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slow pyrolysis polygeneration of bamboo (Phyllostachys pubescens): Product yield prediction and biochar formation mechanism.
    Wang H; Wang X; Cui Y; Xue Z; Ba Y
    Bioresour Technol; 2018 Sep; 263():444-449. PubMed ID: 29772506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic pyrolysis of lotus leaves for producing nitrogen self-doping layered graphitic biochar: Performance and mechanism for peroxydisulfate activation.
    Liu F; Ding J; Zhao G; Zhao Q; Wang K; Wang G; Gao Q
    Chemosphere; 2022 Sep; 302():134868. PubMed ID: 35533937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of NH
    Chen W; Li K; Xia M; Chen Y; Yang H; Chen Z; Chen X; Chen H
    Bioresour Technol; 2018 Sep; 263():350-357. PubMed ID: 29772499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emission characteristics of a pyrolysis-combustion system for the co-production of biochar and bioenergy from agricultural wastes.
    Dunnigan L; Morton BJ; Ashman PJ; Zhang X; Kwong CW
    Waste Manag; 2018 Jul; 77():59-66. PubMed ID: 30008415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic pyrolysis of tire waste: Impacts of biochar catalyst on product evolution.
    Chao L; Zhang C; Zhang L; Gholizadeh M; Hu X
    Waste Manag; 2020 Oct; 116():9-21. PubMed ID: 32781409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochar physicochemical parameters as a result of feedstock material and pyrolysis temperature: predictable for the fate of biochar in soil?
    Břendová K; Száková J; Lhotka M; Krulikovská T; Punčochář M; Tlustoš P
    Environ Geochem Health; 2017 Dec; 39(6):1381-1395. PubMed ID: 28664248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lignin-phenol monomers govern the pyrolytic conversion of natural biomass from lignocellulose to products.
    Hu H; Tan W; Xi B
    Environ Sci Ecotechnol; 2021 Oct; 8():100131. PubMed ID: 36156992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of polycyclic aromatic hydrocarbon formation during pyrolytic production of lignin-based biochar via nitrogen and boron co-doping.
    Hung CM; Chen CW; Huang CP; Yang YY; Dong CD
    Bioresour Technol; 2022 Jul; 355():127246. PubMed ID: 35490956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.