These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 36921551)

  • 41. Valine dehydrogenase from a non-spore-forming bacterium, Alcaligenes faecalis: purification and characterization.
    Ohshima T; Soda K
    Biochim Biophys Acta; 1993 Mar; 1162(1-2):221-6. PubMed ID: 8448188
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Crystal Structure of L-Leucine Dehydrogenase from
    Kim S; Koh S; Kang W; Yang JK
    Mol Cells; 2022 Jul; 45(7):495-501. PubMed ID: 35698914
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reductive amination by recombinant Escherichia coli: whole cell biotransformation of 2-keto-3-methylvalerate to L-isoleucine.
    Lorenz E; Klatte S; Wendisch VF
    J Biotechnol; 2013 Nov; 168(3):289-94. PubMed ID: 23831557
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A pH-controlled fed-batch process can overcome inhibition by formate in NADH-dependent enzymatic reductions using formate dehydrogenase-catalyzed coenzyme regeneration.
    Neuhauser W; Steininger M; Haltrich D; Kulbe KD; Nidetzky B
    Biotechnol Bioeng; 1998 Nov; 60(3):277-82. PubMed ID: 10099429
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Metabolic engineering of cofactor flavin adenine dinucleotide (FAD) synthesis and regeneration in Escherichia coli for production of α-keto acids.
    Hou Y; Hossain GS; Li J; Shin HD; Du G; Chen J; Liu L
    Biotechnol Bioeng; 2017 Sep; 114(9):1928-1936. PubMed ID: 28498544
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Efficient single whole-cell biotransformation for L-2-aminobutyric acid production through engineering of leucine dehydrogenase combined with expression regulation.
    Chen J; Zhu R; Zhou J; Yang T; Zhang X; Xu M; Rao Z
    Bioresour Technol; 2021 Apr; 326():124665. PubMed ID: 33540211
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The oxygen-tolerant and NAD+-dependent formate dehydrogenase from Rhodobacter capsulatus is able to catalyze the reduction of CO2 to formate.
    Hartmann T; Leimkühler S
    FEBS J; 2013 Dec; 280(23):6083-96. PubMed ID: 24034888
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthesis of alanine and leucine by reductive amination of 2-oxoic acid with combination of hydrogenase and dehydrogenase.
    Hasumi F; Fukuoka K; Adachi S; Miyamoto Y; Okura I
    Appl Biochem Biotechnol; 1996 Mar; 56(3):341-4. PubMed ID: 8984906
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enzyme engineering aspects of biocatalysis: cofactor regeneration as example.
    Kragl U; Kruse W; Hummel W; Wandrey C
    Biotechnol Bioeng; 1996 Oct; 52(2):309-19. PubMed ID: 18629898
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A new NAD+-dependent opine dehydrogenase from Arthrobacter sp. strain 1C.
    Asano Y; Yamaguchi K; Kondo K
    J Bacteriol; 1989 Aug; 171(8):4466-71. PubMed ID: 2753861
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Construction and characterization of chimeric enzyme consisting of an amino-terminal domain of phenylalanine dehydrogenase and a carboxy-terminal domain of leucine dehydrogenase.
    Kataoka K; Takada H; Tanizawa K; Yoshimura T; Esaki N; Ohshima T; Soda K
    J Biochem; 1994 Oct; 116(4):931-6. PubMed ID: 7883771
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Leucine Dehydrogenase: Structure and Thermostability.
    Yamaguchi H; Kamegawa A; Nakata K; Kashiwagi T; Fujiyoshi Y; Tani K; Mizukoshi T
    Subcell Biochem; 2021; 96():355-372. PubMed ID: 33252736
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthesis of Formate from CO
    Yu X; Niks D; Ge X; Liu H; Hille R; Mulchandani A
    Biochemistry; 2019 Apr; 58(14):1861-1868. PubMed ID: 30839197
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Efficient Enzymatic Preparation of (13) N-Labelled Amino Acids: Towards Multipurpose Synthetic Systems.
    da Silva ES; Gómez-Vallejo V; Baz Z; Llop J; López-Gallego F
    Chemistry; 2016 Sep; 22(38):13619-26. PubMed ID: 27515007
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Expression of Novel
    Jia YY; Xie YL; Yang LL; Shi HL; Lu YF; Zhang SP; Tang CD; Yao LG; Kan YC
    Front Bioeng Biotechnol; 2021; 9():655522. PubMed ID: 33859982
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Activation of glutamate dehydrogenase by L-leucine.
    Couée I; Tipton KF
    Biochim Biophys Acta; 1989 Mar; 995(1):97-101. PubMed ID: 2923920
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Conversion of ammonia or urea into L-leucine, L-valine, and L-isoleucine using artificial cells containing an immobilized multienzyme system and dextran-NAD+. Glucose dehydrogenase for co-factor recycling.
    Gu KF; Chang TM
    ASAIO Trans; 1988; 34(1):24-8. PubMed ID: 2454127
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Auxiliary NADH Dehydrogenase Plays a Crucial Role in Redox Homeostasis of Nicotinamide Cofactors in the Absence of the Periplasmic Oxidation System in Gluconobacter oxydans NBRC3293.
    Sriherfyna FH; Matsutani M; Hirano K; Koike H; Kataoka N; Yamashita T; Nakamaru-Ogiso E; Matsushita K; Yakushi T
    Appl Environ Microbiol; 2021 Jan; 87(2):. PubMed ID: 33127815
    [No Abstract]   [Full Text] [Related]  

  • 59. Resistance to Phosphinothricin (Glufosinate) and Its Utilization as a Nitrogen Source by Chlamydomonas reinhardtii.
    Franco AR; Lopez-Siles FJ; Cardenas J
    Appl Environ Microbiol; 1996 Oct; 62(10):3834-9. PubMed ID: 16535427
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Regulation of the NADH pool and NADH/NADPH ratio redistributes acetoin and 2,3-butanediol proportion in Bacillus subtilis.
    Bao T; Zhang X; Zhao X; Rao Z; Yang T; Yang S
    Biotechnol J; 2015 Aug; 10(8):1298-306. PubMed ID: 26129872
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.