These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 36921642)
21. Alleviation of carbon catabolite repression in Enterobacter aerogenes for efficient utilization of sugarcane molasses for 2,3-butanediol production. Jung MY; Jung HM; Lee J; Oh MK Biotechnol Biofuels; 2015; 8():106. PubMed ID: 26236395 [TBL] [Abstract][Full Text] [Related]
22. High value added lipids produced by microorganisms: a potential use of sugarcane vinasse. Fernandes BS; Vieira JPF; Contesini FJ; Mantelatto PE; Zaiat M; Pradella JGDC Crit Rev Biotechnol; 2017 Dec; 37(8):1048-1061. PubMed ID: 28423943 [TBL] [Abstract][Full Text] [Related]
23. Polyhydroxyalkanoate (PHA) production via resource recovery from industrial waste streams: A review of techniques and perspectives. De Donno Novelli L; Moreno Sayavedra S; Rene ER Bioresour Technol; 2021 Jul; 331():124985. PubMed ID: 33819906 [TBL] [Abstract][Full Text] [Related]
24. Chemical-free production of multiple high-value bioproducts from metabolically engineered transgenic sugarcane 'oilcane' bagasse and their recovery using nanofiltration. Jia Y; Maitra S; Singh V Bioresour Technol; 2023 Mar; 371():128630. PubMed ID: 36657588 [TBL] [Abstract][Full Text] [Related]
25. Use of anaerobic co-digestion as an alternative to add value to sugarcane biorefinery wastes. Adarme OFH; Baêta BEL; Filho JBG; Gurgel LVA; Aquino SF Bioresour Technol; 2019 Sep; 287():121443. PubMed ID: 31103937 [TBL] [Abstract][Full Text] [Related]
26. Perspectives on the production of polyhydroxyalkanoates in biorefineries associated with the production of sugar and ethanol. Silva LF; Taciro MK; Raicher G; Piccoli RA; Mendonça TT; Lopes MS; Gomez JG Int J Biol Macromol; 2014 Nov; 71():2-7. PubMed ID: 25043132 [TBL] [Abstract][Full Text] [Related]
27. Sustainable enzymatic approaches in a fungal lipid biorefinery based in sugarcane bagasse hydrolysate as carbon source. Carvalho AKF; Bento HBS; Reis CER; De Castro HF Bioresour Technol; 2019 Mar; 276():269-275. PubMed ID: 30640021 [TBL] [Abstract][Full Text] [Related]
28. Polyhydroxyalkanoate Synthesis by de Paula CBC; de Paula-Elias FC; Rodrigues MN; Coelho LF; de Oliveira NML; de Almeida AF; Contiero J Front Bioeng Biotechnol; 2020; 8():631284. PubMed ID: 33520976 [TBL] [Abstract][Full Text] [Related]
29. Bioreactors for lignocellulose conversion into fermentable sugars for production of high added value products. Liguori R; Ventorino V; Pepe O; Faraco V Appl Microbiol Biotechnol; 2016 Jan; 100(2):597-611. PubMed ID: 26572518 [TBL] [Abstract][Full Text] [Related]
30. Improvement and Metabolomics-Based Analysis of d-Lactic Acid Production from Agro-Industrial Wastes by Liang S; Jiang W; Song Y; Zhou SF J Agric Food Chem; 2020 Jul; 68(29):7660-7669. PubMed ID: 32603099 [TBL] [Abstract][Full Text] [Related]
31. Recent trends in bioethanol production from food processing byproducts. Akbas MY; Stark BC J Ind Microbiol Biotechnol; 2016 Nov; 43(11):1593-1609. PubMed ID: 27565674 [TBL] [Abstract][Full Text] [Related]
32. Enriched microbial consortia for dark fermentation of sugarcane vinasse towards value-added short-chain organic acids and alcohol production. de Souza Moraes B; Mary Dos Santos G; Palladino Delforno T; Tadeu Fuess L; José da Silva A J Biosci Bioeng; 2019 May; 127(5):594-601. PubMed ID: 30420331 [TBL] [Abstract][Full Text] [Related]
33. Engineered Enterobacter aerogenes for efficient utilization of sugarcane molasses in 2,3-butanediol production. Jung MY; Park BS; Lee J; Oh MK Bioresour Technol; 2013 Jul; 139():21-7. PubMed ID: 23644066 [TBL] [Abstract][Full Text] [Related]
34. Valuable Compound Extraction, Anaerobic Digestion, and Composting: A Leading Biorefinery Approach for Agricultural Wastes. Fermoso FG; Serrano A; Alonso-Fariñas B; Fernández-Bolaños J; Borja R; Rodríguez-Gutiérrez G J Agric Food Chem; 2018 Aug; 66(32):8451-8468. PubMed ID: 30010339 [TBL] [Abstract][Full Text] [Related]
35. Anaerobic digestion of sugarcane bagasse for biogas production and digestate valorization. Agarwal NK; Kumar M; Ghosh P; Kumar SS; Singh L; Vijay VK; Kumar V Chemosphere; 2022 May; 295():133893. PubMed ID: 35134407 [TBL] [Abstract][Full Text] [Related]
36. Sequential process of solid-state cultivation with fungal consortium and ethanol fermentation by Saccharomyces cerevisiae from sugarcane bagasse. Brito Codato C; Gaspar Bastos R; Ceccato-Antonini SR Bioprocess Biosyst Eng; 2021 Oct; 44(10):1-8. PubMed ID: 34018026 [TBL] [Abstract][Full Text] [Related]
37. A sustainable biorefinery to convert agricultural residues into value-added chemicals. Liu Z; Liao W; Liu Y Biotechnol Biofuels; 2016; 9():197. PubMed ID: 27660652 [TBL] [Abstract][Full Text] [Related]
38. Utilization of pentoses from sugarcane biomass: techno-economics of biogas vs. butanol production. Mariano AP; Dias MO; Junqueira TL; Cunha MP; Bonomi A; Filho RM Bioresour Technol; 2013 Aug; 142():390-9. PubMed ID: 23748087 [TBL] [Abstract][Full Text] [Related]
39. Raw sugarcane bagasse as carbon source for xylanase production by Paenibacillus species: a potential degrader of agricultural wastes. Di Marco E; Soraire PM; Romero CM; Villegas LB; Martínez MA Environ Sci Pollut Res Int; 2017 Aug; 24(23):19057-19067. PubMed ID: 28660507 [TBL] [Abstract][Full Text] [Related]
40. Study of sugarcane pieces as yeast supports for ethanol production from sugarcane juice and molasses. Liang L; Zhang YP; Zhang L; Zhu MJ; Liang SZ; Huang YN J Ind Microbiol Biotechnol; 2008 Dec; 35(12):1605-13. PubMed ID: 18685877 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]