BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36921747)

  • 1. Neurocognitive Mechanisms Underlying Attention Bias Towards Pain: Evidence From a Drift-Diffusion Model and Event-Related Potentials.
    Zhang Y; Ye Q; He H; Jin R; Peng W
    J Pain; 2023 Jul; 24(7):1307-1320. PubMed ID: 36921747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ERP evidence for selective drop in attentional costs in uncertain environments: challenging a purely premotor account of covert orienting of attention.
    Lasaponara S; Chica AB; Lecce F; Lupianez J; Doricchi F
    Neuropsychologia; 2011 Jul; 49(9):2648-57. PubMed ID: 21640737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Event related potentials during covert orientation of visual attention: effects of cue validity and directionality.
    Wright MJ; Geffen GM; Geffen LB
    Biol Psychol; 1995 Oct; 41(2):183-202. PubMed ID: 8534791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypervigilance to learned pain signals: a componential analysis.
    Van Damme S; Crombez G; Eccleston C; Koster EH
    J Pain; 2006 May; 7(5):346-57. PubMed ID: 16632324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Faster, more intense! The relation between electrophysiological reflections of attentional orienting, sensory gain control, and speed of responding.
    Talsma D; Mulckhuyse M; Slagter HA; Theeuwes J
    Brain Res; 2007 Oct; 1178():92-105. PubMed ID: 17931607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparatory slow potentials and event-related potentials in an auditory cued attention task.
    Golob EJ; Pratt H; Starr A
    Clin Neurophysiol; 2002 Oct; 113(10):1544-57. PubMed ID: 12350430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Common modules for processing invalidly cued events in the human cortex.
    Mattler U; Wüstenberg T; Heinze HJ
    Brain Res; 2006 Sep; 1109(1):128-41. PubMed ID: 16859648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pushing attention to one side: Force field adaptation alters neural correlates of orienting and disengagement of spatial attention.
    Reuter EM; Mattingley JB; Cunnington R; Riek S; Carroll TJ
    Eur J Neurosci; 2019 Jan; 49(1):120-136. PubMed ID: 30408253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial cueing, sensory gating and selective response preparation: an ERP study on visuo-spatial orienting.
    Eimer M
    Electroencephalogr Clin Neurophysiol; 1993; 88(5):408-20. PubMed ID: 7691565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attention shifting and subliminal cueing under high attentional load: an EEG study using emotional faces.
    Tipura E; Renaud O; Pegna AJ
    Neuroreport; 2019 Dec; 30(18):1251-1255. PubMed ID: 31609828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prism Adaptation Alters Electrophysiological Markers of Attentional Processes in the Healthy Brain.
    Martín-Arévalo E; Laube I; Koun E; Farnè A; Reilly KT; Pisella L
    J Neurosci; 2016 Jan; 36(3):1019-30. PubMed ID: 26791229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expectancy and attention bias to spiders: Dissecting anticipation and allocation processes using ERPs.
    Abado E; Aue T; Pourtois G; Okon-Singer H
    Psychophysiology; 2024 Jun; 61(6):e14546. PubMed ID: 38406863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased attention but more efficient disengagement: neuroscientific evidence for defensive processing of threatening health information.
    Kessels LT; Ruiter RA; Jansma BM
    Health Psychol; 2010 Jul; 29(4):346-54. PubMed ID: 20658820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Target processing is facilitated by motivationally relevant cues.
    Briggs KE; Martin FH
    Biol Psychol; 2008 Apr; 78(1):29-42. PubMed ID: 18262710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiological correlates to cued attentional shifts in the visual and auditory modalities.
    Hugdahl K; Nordby H
    Behav Neural Biol; 1994 Jul; 62(1):21-32. PubMed ID: 7945141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. When experience with scenes foils attentional orienting: ERP evidence against flexible target-context mapping in visual search.
    Zinchenko A; Geyer T; Zang X; Shi Z; Müller HJ; Conci M
    Cortex; 2024 Jun; 175():41-53. PubMed ID: 38703715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cueing effects on semantic and perceptual categorization: ERPs reveal differential effects of validity as a function of processing stage.
    Lai G; Mangels JA
    Neuropsychologia; 2007 May; 45(9):2038-50. PubMed ID: 17382975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural processes underlying the orienting of attention without awareness.
    Giattino CM; Alam ZM; Woldorff MG
    Cortex; 2018 May; 102():14-25. PubMed ID: 28826603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wavelet analysis of the EEG during the neurocognitive evaluation of invalidly cued targets.
    Digiacomo MR; Marco-Pallarés J; Flores AB; Gómez CM
    Brain Res; 2008 Oct; 1234():94-103. PubMed ID: 18708032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of somatic threat feature detectors in the attentional bias toward pain: effects of spatial attention.
    Dowman R
    Psychophysiology; 2011 Mar; 48(3):397-409. PubMed ID: 20636292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.