BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36921802)

  • 1. Drug discovery efforts at George Mason University.
    Andalibi A; Veneziano R; Paige M; Buschmann M; Haymond A; Espina V; Luchini A; Liotta L; Bishop B; Van Hoek M
    SLAS Discov; 2023 Sep; 28(6):270-274. PubMed ID: 36921802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid Nanoparticle-mRNA Formulations for Therapeutic Applications.
    Wang C; Zhang Y; Dong Y
    Acc Chem Res; 2021 Dec; 54(23):4283-4293. PubMed ID: 34793124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Komodo dragon-inspired synthetic peptide DRGN-1 promotes wound-healing of a mixed-biofilm infected wound.
    Chung EMC; Dean SN; Propst CN; Bishop BM; van Hoek ML
    NPJ Biofilms Microbiomes; 2017; 3():9. PubMed ID: 28649410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developing Biodegradable Lipid Nanoparticles for Intracellular mRNA Delivery and Genome Editing.
    Qiu M; Li Y; Bloomer H; Xu Q
    Acc Chem Res; 2021 Nov; 54(21):4001-4011. PubMed ID: 34668716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemistry of Lipid Nanoparticles for RNA Delivery.
    Eygeris Y; Gupta M; Kim J; Sahay G
    Acc Chem Res; 2022 Jan; 55(1):2-12. PubMed ID: 34850635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilization of Ostwald ripening in low molecular weight amino lipid nanoparticles for systemic delivery of siRNA therapeutics.
    Gindy ME; Feuston B; Glass A; Arrington L; Haas RM; Schariter J; Stirdivant SM
    Mol Pharm; 2014 Nov; 11(11):4143-53. PubMed ID: 25317715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient siRNA Delivery by Lipid Nanoparticles Modified with a Nonstandard Macrocyclic Peptide for EpCAM-Targeting.
    Sakurai Y; Mizumura W; Murata M; Hada T; Yamamoto S; Ito K; Iwasaki K; Katoh T; Goto Y; Takagi A; Kohara M; Suga H; Harashima H
    Mol Pharm; 2017 Oct; 14(10):3290-3298. PubMed ID: 28789523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Komodo-dragon cathelicidin-inspired peptides are antibacterial against carbapenem-resistant
    Hitt SJ; Bishop BM; van Hoek ML
    J Med Microbiol; 2020 Nov; 69(11):1262-1272. PubMed ID: 33084564
    [No Abstract]   [Full Text] [Related]  

  • 12. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery.
    Cheng X; Lee RJ
    Adv Drug Deliv Rev; 2016 Apr; 99(Pt A):129-137. PubMed ID: 26900977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid-nucleic acid nanoparticles of novel ionizable lipids for systemic BMP-9 gene delivery to bone-marrow mesenchymal stem cells for osteoinduction.
    Vhora I; Lalani R; Bhatt P; Patil S; Misra A
    Int J Pharm; 2019 May; 563():324-336. PubMed ID: 30954673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleic Acid-Loaded Lipid Nanoparticle Interactions with Model Endosomal Membranes.
    Spadea A; Jackman M; Cui L; Pereira S; Lawrence MJ; Campbell RA; Ashford M
    ACS Appl Mater Interfaces; 2022 Jul; 14(26):30371-30384. PubMed ID: 35758331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size-controlled lipid nanoparticle production using turbulent mixing to enhance oral DNA delivery.
    He Z; Hu Y; Nie T; Tang H; Zhu J; Chen K; Liu L; Leong KW; Chen Y; Mao HQ
    Acta Biomater; 2018 Nov; 81():195-207. PubMed ID: 30267888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polydispersity characterization of lipid nanoparticles for siRNA delivery using multiple detection size-exclusion chromatography.
    Zhang J; Haas RM; Leone AM
    Anal Chem; 2012 Jul; 84(14):6088-96. PubMed ID: 22816783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo targeted delivery of nanoparticles for theranosis.
    Koo H; Huh MS; Sun IC; Yuk SH; Choi K; Kim K; Kwon IC
    Acc Chem Res; 2011 Oct; 44(10):1018-28. PubMed ID: 21851104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antibodies to domains II and III of the IL-1 receptor accessory protein inhibit IL-1 beta activity but not binding: regulation of IL-1 responses is via type I receptor, not the accessory protein.
    Yoon DY; Dinarello CA
    J Immunol; 1998 Apr; 160(7):3170-9. PubMed ID: 9531272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iterative Design of Ionizable Lipids for Intramuscular mRNA Delivery.
    Tilstra G; Couture-Senécal J; Lau YMA; Manning AM; Wong DSM; Janaeska WW; Wuraola TA; Pang J; Khan OF
    J Am Chem Soc; 2023 Feb; 145(4):2294-2304. PubMed ID: 36652629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytosolic protein delivery using pH-responsive, charge-reversible lipid nanoparticles.
    Hirai Y; Hirose H; Imanishi M; Asai T; Futaki S
    Sci Rep; 2021 Oct; 11(1):19896. PubMed ID: 34615928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.