These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 36921871)
1. Mobilization pilot test of PCE sources in the transition zone to aquitards by combining mZVI and biostimulation with lactic acid. Puigserver D; Herrero J; Carmona JM Sci Total Environ; 2023 Jun; 877():162751. PubMed ID: 36921871 [TBL] [Abstract][Full Text] [Related]
2. Reductive dechlorination in recalcitrant sources of chloroethenes in the transition zone between aquifers and aquitards. Puigserver D; Herrero J; Torres M; Cortés A; Nijenhuis I; Kuntze K; Parker BL; Carmona JM Environ Sci Pollut Res Int; 2016 Sep; 23(18):18724-41. PubMed ID: 27314420 [TBL] [Abstract][Full Text] [Related]
3. Natural attenuation of pools and plumes of carbon tetrachloride and chloroform in the transition zone to bottom aquitards and the microorganisms involved in their degradation. Puigserver D; Herrero J; Parker BL; Carmona JM Sci Total Environ; 2020 Apr; 712():135679. PubMed ID: 31785913 [TBL] [Abstract][Full Text] [Related]
4. Biotic and abiotic reductive dechlorination of chloroethenes in aquitards. Puigserver D; Herrero J; Nogueras X; Cortés A; Parker BL; Playà E; Carmona JM Sci Total Environ; 2022 Apr; 816():151532. PubMed ID: 34752872 [TBL] [Abstract][Full Text] [Related]
5. Nitrate removal by combining chemical and biostimulation approaches using micro-zero valent iron and lactic acid. Puigserver D; Herrero J; Carmona JM Sci Total Environ; 2022 Oct; 843():156841. PubMed ID: 35750160 [TBL] [Abstract][Full Text] [Related]
6. Assessing aquitard integrity in a complex aquifer - aquitard system contaminated by chlorinated hydrocarbons. Filippini M; Parker BL; Dinelli E; Wanner P; Chapman SW; Gargini A Water Res; 2020 Mar; 171():115388. PubMed ID: 31877474 [TBL] [Abstract][Full Text] [Related]
7. Do CSIA data from aquifers inform on natural degradation of chlorinated ethenes in aquitards? Thouement HAA; Kuder T; Heimovaara TJ; van Breukelen BM J Contam Hydrol; 2019 Oct; 226():103520. PubMed ID: 31377464 [TBL] [Abstract][Full Text] [Related]
8. Pilot tests for the optimization of the bioremediation strategy of a multi-layered aquifer at a multi-focus site impacted with chlorinated ethenes. Blázquez-Pallí N; Torrentó C; Marco-Urrea E; Garriga D; González M; Bosch M Sci Total Environ; 2024 Jul; 935():173093. PubMed ID: 38768723 [TBL] [Abstract][Full Text] [Related]
9. The role of ecotones in the dehalogenation of chloroethenes in alluvial fan aquifers. Herrero J; Puigserver D; Nijenhuis I; Kuntze K; Parker BL; Carmona JM Environ Sci Pollut Res Int; 2021 Jun; 28(21):26871-26884. PubMed ID: 33495954 [TBL] [Abstract][Full Text] [Related]
10. Architecture, persistence and dissolution of a 20 to 45 year old trichloroethene DNAPL source zone. Rivett MO; Dearden RA; Wealthall GP J Contam Hydrol; 2014 Dec; 170():95-115. PubMed ID: 25444120 [TBL] [Abstract][Full Text] [Related]
11. Biologically enhanced mass transfer of tetrachloroethene from DNAPL in source zones: experimental evaluation and influence of pool morphology. Glover KC; Munakata-Marr J; Illangasekare TH Environ Sci Technol; 2007 Feb; 41(4):1384-9. PubMed ID: 17593746 [TBL] [Abstract][Full Text] [Related]
12. Spatial and temporal dynamics of organohalide-respiring bacteria in a heterogeneous PCE-DNAPL source zone. Cápiro NL; Löffler FE; Pennell KD J Contam Hydrol; 2015 Nov; 182():78-90. PubMed ID: 26348832 [TBL] [Abstract][Full Text] [Related]
13. The significance of heterogeneity on mass flux from DNAPL source zones: an experimental investigation. Page JW; Soga K; Illangasekare T J Contam Hydrol; 2007 Dec; 94(3-4):215-34. PubMed ID: 17706832 [TBL] [Abstract][Full Text] [Related]
14. Effect of source variability and transport processes on carbon isotope ratios of TCE and PCE in two sandy aquifers. Hunkeler D; Chollet N; Pittet X; Aravena R; Cherry JA; Parker BL J Contam Hydrol; 2004 Oct; 74(1-4):265-82. PubMed ID: 15358496 [TBL] [Abstract][Full Text] [Related]
15. PCE dissolution and simultaneous dechlorination by nanoscale zero-valent iron particles in a DNAPL source zone. Fagerlund F; Illangasekare TH; Phenrat T; Kim HJ; Lowry GV J Contam Hydrol; 2012 Apr; 131(1-4):9-28. PubMed ID: 22326687 [TBL] [Abstract][Full Text] [Related]
16. Effectiveness of nanoscale zero-valent iron for treatment of a PCE-DNAPL source zone. Taghavy A; Costanza J; Pennell KD; Abriola LM J Contam Hydrol; 2010 Nov; 118(3-4):128-42. PubMed ID: 20888664 [TBL] [Abstract][Full Text] [Related]
17. The effects of hydraulic/pneumatic fracturing-enhanced remediation (FRAC-IN) at a site contaminated by chlorinated ethenes: A case study. Lhotský O; Kukačka J; Slunský J; Marková K; Němeček J; Knytl V; Cajthaml T J Hazard Mater; 2021 Sep; 417():125883. PubMed ID: 33971551 [TBL] [Abstract][Full Text] [Related]
18. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. He F; Zhao D; Paul C Water Res; 2010 Apr; 44(7):2360-70. PubMed ID: 20106501 [TBL] [Abstract][Full Text] [Related]
19. Multi-method assessment of the intrinsic biodegradation potential of an aquifer contaminated with chlorinated ethenes at an industrial area in Barcelona (Spain). Blázquez-Pallí N; Rosell M; Varias J; Bosch M; Soler A; Vicent T; Marco-Urrea E Environ Pollut; 2019 Jan; 244():165-173. PubMed ID: 30326388 [TBL] [Abstract][Full Text] [Related]
20. Characterizing natural degradation of tetrachloroethene (PCE) using a multidisciplinary approach. Åkesson S; Sparrenbom CJ; Paul CJ; Jansson R; Holmstrand H Ambio; 2021 May; 50(5):1074-1088. PubMed ID: 33263919 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]