These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 36922120)

  • 1. Predicting non-equilibrium folding behavior of polymer chains using the steepest-entropy-ascent quantum thermodynamic framework.
    McDonald J; von Spakovsky MR; Reynolds WT
    J Chem Phys; 2023 Mar; 158(10):104904. PubMed ID: 36922120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting Polymer Brush Behavior in Solvents Using the Steepest-Entropy-Ascent Quantum Thermodynamic Framework.
    McDonald J; von Spakovsky MR; Reynolds WT
    J Phys Chem B; 2023 Dec; 127(48):10370-10391. PubMed ID: 38006350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting defect stability and annealing kinetics in two-dimensional PtSe
    Younis A; Baniasadi F; von Spakovsky MR; Reynolds WT
    J Phys Condens Matter; 2022 Dec; 35(7):. PubMed ID: 36395516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting Ion Sequestration in Charged Polymers with the Steepest-Entropy-Ascent Quantum Thermodynamic Framework.
    McDonald J; von Spakovsky MR; Reynolds WT
    Nanomaterials (Basel); 2024 Mar; 14(5):. PubMed ID: 38470788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-temperature atomistic spin relaxation and non-equilibrium intensive properties using steepest-entropy-ascent quantum-inspired thermodynamics modeling.
    Yamada R; von Spakovsky MR; Reynolds WT
    J Phys Condens Matter; 2019 Dec; 31(50):505901. PubMed ID: 31470419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A method for predicting non-equilibrium thermal expansion using steepest-entropy-ascent quantum thermodynamics.
    Yamada R; von Spakovsky MR; Reynolds WT
    J Phys Condens Matter; 2018 Aug; 30(32):325901. PubMed ID: 29964269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steepest-entropy-ascent quantum thermodynamic modeling of the relaxation process of isolated chemically reactive systems using density of states and the concept of hypoequilibrium state.
    Li G; von Spakovsky MR
    Phys Rev E; 2016 Jan; 93(1):012137. PubMed ID: 26871054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the Non-Equilibrium Process of the Chemical Adsorption of Ammonia on GaN(0001) Reconstructed Surfaces Based on Steepest-Entropy-Ascent Quantum Thermodynamics.
    Kusaba A; Li G; von Spakovsky MR; Kangawa Y; Kakimoto K
    Materials (Basel); 2017 Aug; 10(8):. PubMed ID: 28809816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steepest-entropy-ascent nonequilibrium quantum thermodynamic framework to model chemical reaction rates at an atomistic level.
    Beretta GP; Al-Abbasi O; von Spakovsky MR
    Phys Rev E; 2017 Apr; 95(4-1):042139. PubMed ID: 28505826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A thermodynamic scaling law for electrically perturbed lipid membranes: Validation with steepest entropy ascent framework.
    Goswami I; Bielitz R; Verbridge SS; von Spakovsky MR
    Bioelectrochemistry; 2021 Aug; 140():107800. PubMed ID: 33910115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ab initio relaxation times and time-dependent Hamiltonians within the steepest-entropy-ascent quantum thermodynamic framework.
    Kim I; von Spakovsky MR
    Phys Rev E; 2017 Aug; 96(2-1):022129. PubMed ID: 28950609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting continuous and discontinuous phase decompositions using steepest-entropy-ascent quantum thermodynamics.
    Yamada R; von Spakovsky MR; Reynolds WT
    Phys Rev E; 2019 May; 99(5-1):052121. PubMed ID: 31212545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generalized thermodynamic relations for a system experiencing heat and mass diffusion in the far-from-equilibrium realm based on steepest entropy ascent.
    Li G; von Spakovsky MR
    Phys Rev E; 2016 Sep; 94(3-1):032117. PubMed ID: 27739710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Steepest entropy ascent model for far-nonequilibrium thermodynamics: unified implementation of the maximum entropy production principle.
    Beretta GP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042113. PubMed ID: 25375444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CH₄ Adsorption Probability on GaN(0001) and (000-1) during Metalorganic Vapor Phase Epitaxy and Its Relationship to Carbon Contamination in the Films.
    Kusaba A; Li G; Kempisty P; von Spakovsky MR; Kangawa Y
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30909584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steepest entropy ascent solution for a continuous-time quantum walker.
    Ray RK
    Phys Rev E; 2022 Aug; 106(2-1):024115. PubMed ID: 36109967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The nature of the free energy barriers to two-state folding.
    Akmal A; Muñoz V
    Proteins; 2004 Oct; 57(1):142-52. PubMed ID: 15326600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rate of protein folding near the point of thermodynamic equilibrium between the coil and the most stable chain fold.
    Finkelstein AV; Badretdinov AYa
    Fold Des; 1997; 2(2):115-21. PubMed ID: 9135984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-Energy and Time-Entropy Uncertainty Relations in Nonequilibrium Quantum Thermodynamics under Steepest-Entropy-Ascent Nonlinear Master Equations.
    Beretta GP
    Entropy (Basel); 2019 Jul; 21(7):. PubMed ID: 33267393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The fourth law of thermodynamics: steepest entropy ascent.
    Beretta GP
    Philos Trans A Math Phys Eng Sci; 2020 May; 378(2170):20190168. PubMed ID: 32223406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.