These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 36922185)

  • 1. [Research Progress on Remote Sensing Monitoring of Lake Water Quality Parameters].
    Wang SM; Qin BQ
    Huan Jing Ke Xue; 2023 Mar; 44(3):1228-1243. PubMed ID: 36922185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review on the research progress of lake water volume estimation methods.
    An C; Zhang F; Chan NW; Johnson VC; Shi J
    J Environ Manage; 2022 Jul; 314():115057. PubMed ID: 35452887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Analysis on Diurnal Variation of Chlorophyll-a Concentration of Taihu Lake Based on Optical Classification with GOCI Data].
    Bao Y; Tian QJ; Chen M; Lü CG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Aug; 36(8):2562-7. PubMed ID: 30074364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The feasibility of monitoring wilderness lake chemistry with remote sensing methods.
    Vertucci FA
    Environ Monit Assess; 1989 Apr; 12(1):59. PubMed ID: 24249059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new approach to quantify chlorophyll-a over inland water targets based on multi-source remote sensing data.
    Wang J; Chen X
    Sci Total Environ; 2024 Jan; 906():167631. PubMed ID: 37806589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimized remote sensing estimation of the lake algal biomass by considering the vertically heterogeneous chlorophyll distribution: Study case in Lake Chaohu of China.
    Hu M; Zhang Y; Ma R; Xue K; Cao Z; Chu Q; Jing Y
    Sci Total Environ; 2021 Jun; 771():144811. PubMed ID: 33545474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplatform optical monitoring of eutrophication in temporally and spatially variable lakes.
    Vos RJ; Hakvoort JH; Jordans RW; Ibelings BW
    Sci Total Environ; 2003 Aug; 312(1-3):221-43. PubMed ID: 12873412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving lake chlorophyll-a interpreting accuracy by combining spectral and texture features of remote sensing.
    Yang Y; Zhang X; Gao W; Zhang Y; Hou X
    Environ Sci Pollut Res Int; 2023 Jul; 30(35):83628-83642. PubMed ID: 37349490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis on the feasibility of multi-source remote sensing observations for chl-a monitoring in Finnish lakes.
    Koponen S; Pulliainen J; Servomaa H; Zhang Y; Hallikainen M; Kallio K; Vepsäläinen J; Pyhälahti T; Hannonen T
    Sci Total Environ; 2001 Mar; 268(1-3):95-106. PubMed ID: 11315749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Muti-model collaborative retrieval of chlorophyll a in Taihu lake based on data assimilation ].
    Li Y; Li YM; Lü H; Zhu L; Wu CQ; Du CG; Wang S
    Huan Jing Ke Xue; 2014 Sep; 35(9):3389-96. PubMed ID: 25518656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Quantitative remote sensing retrieval for algae in inland waters].
    Song Y; Song XD; Jiang H; Guo ZB; Guo QH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Apr; 30(4):1075-9. PubMed ID: 20545165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the effectiveness of Landsat 8 chlorophyll a retrieval algorithms for regional freshwater monitoring.
    Boucher J; Weathers KC; Norouzi H; Steele B
    Ecol Appl; 2018 Jun; 28(4):1044-1054. PubMed ID: 29847690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated satellite data fusion and mining for monitoring lake water quality status of the Albufera de Valencia in Spain.
    Doña C; Chang NB; Caselles V; Sánchez JM; Camacho A; Delegido J; Vannah BW
    J Environ Manage; 2015 Mar; 151():416-26. PubMed ID: 25602695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Evaluation on the atmospheric correction methods for water color remote sensing by using HJ-1A/1B CCD image-taking Poyang Lake in China as a case].
    Zeng Q; Zhao Y; Tian LQ; Chen XL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 May; 33(5):1320-6. PubMed ID: 23905344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on remote sensing inversion and temporal-spatial variation of Hulun lake water quality based on machine learning.
    Song W; A Y; Wang Y; Fang Q; Tang R
    J Contam Hydrol; 2024 Jan; 260():104282. PubMed ID: 38101229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remote sensing estimation of the total phosphorus concentration in a large lake using band combinations and regional multivariate statistical modeling techniques.
    Gao Y; Gao J; Yin H; Liu C; Xia T; Wang J; Huang Q
    J Environ Manage; 2015 Mar; 151():33-43. PubMed ID: 25528271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of remote sensing algorithm for total phosphorus concentration in eutrophic lakes: Conventional or machine learning?
    Xiong J; Lin C; Cao Z; Hu M; Xue K; Chen X; Ma R
    Water Res; 2022 May; 215():118213. PubMed ID: 35247602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Satellite-ground synchronous in-situ dataset of water optical parameters and surface temperature for typical lakes in China.
    Zhai M; Zhou X; Tao Z; Xie Y; Yang J; Shao W; Zhang H; Lv T
    Sci Data; 2024 Aug; 11(1):883. PubMed ID: 39143120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation and Comparison of Water Quality Products in Baltic Lakes Using Sentinel-2 MSI and Sentinel-3 OLCI Data.
    Soomets T; Uudeberg K; Jakovels D; Brauns A; Zagars M; Kutser T
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32013214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.