BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36922521)

  • 1. Optimization of nutrient utilization efficiency and productivity for algal cultures under light and dark cycles using genome-scale model process control.
    Li CT; Eng R; Zuniga C; Huang KW; Chen Y; Zengler K; Betenbaugh MJ
    NPJ Syst Biol Appl; 2023 Mar; 9(1):7. PubMed ID: 36922521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilizing genome-scale models to optimize nutrient supply for sustained algal growth and lipid productivity.
    Li CT; Yelsky J; Chen Y; Zuñiga C; Eng R; Jiang L; Shapiro A; Huang KW; Zengler K; Betenbaugh MJ
    NPJ Syst Biol Appl; 2019; 5():33. PubMed ID: 31583115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recycling of food waste as nutrients in Chlorella vulgaris cultivation.
    Lau KY; Pleissner D; Lin CSK
    Bioresour Technol; 2014 Oct; 170():144-151. PubMed ID: 25128844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of degree and timing of nitrogen limitation on lipid productivity in Chlorella vulgaris.
    Griffiths MJ; van Hille RP; Harrison ST
    Appl Microbiol Biotechnol; 2014 Jul; 98(13):6147-59. PubMed ID: 24824221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cultivation of Chlorella vulgaris in sludge extracts: Nutrient removal and algal utilization.
    Wang L; Addy M; Lu Q; Cobb K; Chen P; Chen X; Liu Y; Wang H; Ruan R
    Bioresour Technol; 2019 May; 280():505-510. PubMed ID: 30777700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of outdoor cultivation in flat panel airlift reactors for lipid production by Chlorella vulgaris.
    Münkel R; Schmid-Staiger U; Werner A; Hirth T
    Biotechnol Bioeng; 2013 Nov; 110(11):2882-93. PubMed ID: 23616347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture.
    Shi XM; Jiang Y; Chen F
    Biotechnol Prog; 2002; 18(4):723-7. PubMed ID: 12153304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Full-scale validation of a model of algal productivity.
    Béchet Q; Shilton A; Guieysse B
    Environ Sci Technol; 2014 Dec; 48(23):13826-33. PubMed ID: 25369326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterotrophic production of Chlorella sp. TISTR 8990-biomass growth and composition under various production conditions.
    Bouyam S; Choorit W; Sirisansaneeyakul S; Chisti Y
    Biotechnol Prog; 2017 Nov; 33(6):1589-1600. PubMed ID: 28653476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymer-based ammonium-limited fed-batch cultivation in shake flasks improves lipid productivity of the microalga Chlorella vulgaris.
    Keil T; Dittrich B; Rührer J; Morschett H; Lattermann C; Möller M; Büchs J
    Bioresour Technol; 2019 Nov; 291():121821. PubMed ID: 31352167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodiesel production from hydrolysate of Cyperus esculentus waste by Chlorella vulgaris.
    Wang W; Zhou W; Liu J; Li Y; Zhang Y
    Bioresour Technol; 2013 May; 136():24-9. PubMed ID: 23548401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effects of different trophic modes on growth characteristics, metabolism and cellular components of Chlorella vulgaris].
    Kong W; Wang Y; Yang H; Xi Y; Han R; Niu S
    Wei Sheng Wu Xue Bao; 2015 Mar; 55(3):299-310. PubMed ID: 26065272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chlorella vulgaris genome assembly and annotation reveals the molecular basis for metabolic acclimation to high light conditions.
    Cecchin M; Marcolungo L; Rossato M; Girolomoni L; Cosentino E; Cuine S; Li-Beisson Y; Delledonne M; Ballottari M
    Plant J; 2019 Dec; 100(6):1289-1305. PubMed ID: 31437318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated dynamic fed-batch process and media optimization for high productivity cell culture process development.
    Lu F; Toh PC; Burnett I; Li F; Hudson T; Amanullah A; Li J
    Biotechnol Bioeng; 2013 Jan; 110(1):191-205. PubMed ID: 22767053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-cell-density heterotrophic cultivation of microalga Chlorella sorokiniana FZU60 for achieving ultra-high lutein production efficiency.
    Xie Y; Zhang Z; Ma R; Liu X; Miao M; Ho SH; Chen J; Kit Leong Y; Chang JS
    Bioresour Technol; 2022 Dec; 365():128130. PubMed ID: 36252750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis of high yield fatty acids from Chlorella vulgaris NIES-227 under nitrogen starvation stress during heterotrophic cultivation.
    Shen XF; Chu FF; Lam PK; Zeng RJ
    Water Res; 2015 Sep; 81():294-300. PubMed ID: 26081436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photosynthetic light reactions increase total lipid accumulation in carbon-supplemented batch cultures of Chlorella vulgaris.
    Woodworth BD; Mead RL; Nichols CN; Kolling DRJ
    Bioresour Technol; 2015 Mar; 179():159-164. PubMed ID: 25543540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced biomass production through optimization of carbon source and utilization of wastewater as a nutrient source.
    Gupta PL; Choi HJ; Pawar RR; Jung SP; Lee SM
    J Environ Manage; 2016 Dec; 184(Pt 3):585-595. PubMed ID: 27789093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimized fed-batch fermentation of Scheffersomyces stipitis for efficient production of ethanol from hexoses and pentoses.
    Unrean P; Nguyen NH
    Appl Biochem Biotechnol; 2013 Mar; 169(6):1895-909. PubMed ID: 23344940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A highly efficient two-stage cultivation strategy for lutein production using heterotrophic culture of Chlorella sorokiniana MB-1-M12.
    Chen CY; Lu IC; Nagarajan D; Chang CH; Ng IS; Lee DJ; Chang JS
    Bioresour Technol; 2018 Apr; 253():141-147. PubMed ID: 29339235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.