BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 36922594)

  • 1. Whole-genome doubling drives oncogenic loss of chromatin segregation.
    Lambuta RA; Nanni L; Liu Y; Diaz-Miyar J; Iyer A; Tavernari D; Katanayeva N; Ciriello G; Oricchio E
    Nature; 2023 Mar; 615(7954):925-933. PubMed ID: 36922594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revealing Hi-C subcompartments by imputing inter-chromosomal chromatin interactions.
    Xiong K; Ma J
    Nat Commun; 2019 Nov; 10(1):5069. PubMed ID: 31699985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Whole-genome doubling confers unique genetic vulnerabilities on tumour cells.
    Quinton RJ; DiDomizio A; Vittoria MA; Kotýnková K; Ticas CJ; Patel S; Koga Y; Vakhshoorzadeh J; Hermance N; Kuroda TS; Parulekar N; Taylor AM; Manning AL; Campbell JD; Ganem NJ
    Nature; 2021 Feb; 590(7846):492-497. PubMed ID: 33505027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Guarding the Genome: CENP-A-Chromatin in Health and Cancer.
    Mahlke MA; Nechemia-Arbely Y
    Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32708729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromatin structure and epigenetics of tumour cells: a review.
    Bártová E; Krejcí J; Hájek R; Harnicarová A; Kozubek S
    Cardiovasc Hematol Disord Drug Targets; 2009 Mar; 9(1):51-61. PubMed ID: 19275577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heritable transcriptional defects from aberrations of nuclear architecture.
    Papathanasiou S; Mynhier NA; Liu S; Brunette G; Stokasimov E; Jacob E; Li L; Comenho C; van Steensel B; Buenrostro JD; Zhang CZ; Pellman D
    Nature; 2023 Jul; 619(7968):184-192. PubMed ID: 37286600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Whole-genome doubling is a double-edged sword: the heterogeneous role of whole-genome doubling in various cancer types.
    Chang E; An JY
    BMB Rep; 2024 Mar; 57(3):125-134. PubMed ID: 38449300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin and epigenetic features of long-range gene regulation.
    Harmston N; Lenhard B
    Nucleic Acids Res; 2013 Aug; 41(15):7185-99. PubMed ID: 23766291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bottom-up modeling of chromatin segregation due to epigenetic modifications.
    MacPherson Q; Beltran B; Spakowitz AJ
    Proc Natl Acad Sci U S A; 2018 Dec; 115(50):12739-12744. PubMed ID: 30478042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The genomic complexity of primary human prostate cancer.
    Berger MF; Lawrence MS; Demichelis F; Drier Y; Cibulskis K; Sivachenko AY; Sboner A; Esgueva R; Pflueger D; Sougnez C; Onofrio R; Carter SL; Park K; Habegger L; Ambrogio L; Fennell T; Parkin M; Saksena G; Voet D; Ramos AH; Pugh TJ; Wilkinson J; Fisher S; Winckler W; Mahan S; Ardlie K; Baldwin J; Simons JW; Kitabayashi N; MacDonald TY; Kantoff PW; Chin L; Gabriel SB; Gerstein MB; Golub TR; Meyerson M; Tewari A; Lander ES; Getz G; Rubin MA; Garraway LA
    Nature; 2011 Feb; 470(7333):214-20. PubMed ID: 21307934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional dysregulation by aberrant enhancer activation and rewiring in cancer.
    Okabe A; Kaneda A
    Cancer Sci; 2021 Jun; 112(6):2081-2088. PubMed ID: 33728716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Higher-order genome organization in human disease.
    Misteli T
    Cold Spring Harb Perspect Biol; 2010 Aug; 2(8):a000794. PubMed ID: 20591991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered chromosomal topology drives oncogenic programs in SDH-deficient GISTs.
    Flavahan WA; Drier Y; Johnstone SE; Hemming ML; Tarjan DR; Hegazi E; Shareef SJ; Javed NM; Raut CP; Eschle BK; Gokhale PC; Hornick JL; Sicinska ET; Demetri GD; Bernstein BE
    Nature; 2019 Nov; 575(7781):229-233. PubMed ID: 31666694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Action at a distance: epigenetic silencing of large chromosomal regions in carcinogenesis.
    Clark SJ
    Hum Mol Genet; 2007 Apr; 16 Spec No 1():R88-95. PubMed ID: 17613553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of chromosome segregation errors in cancer.
    Gisselsson D
    Chromosoma; 2008 Dec; 117(6):511-9. PubMed ID: 18528701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alteration of CTCF-associated chromatin neighborhood inhibits TAL1-driven oncogenic transcription program and leukemogenesis.
    Li Y; Liao Z; Luo H; Benyoucef A; Kang Y; Lai Q; Dovat S; Miller B; Chepelev I; Li Y; Zhao K; Brand M; Huang S
    Nucleic Acids Res; 2020 Apr; 48(6):3119-3133. PubMed ID: 32086528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-Dimensional Genome Organization in Breast and Gynecological Cancers: How Chromatin Folding Influences Tumorigenic Transcriptional Programs.
    Nuñez-Olvera SI; Puente-Rivera J; Ramos-Payán R; Pérez-Plasencia C; Salinas-Vera YM; Aguilar-Arnal L; López-Camarillo C
    Cells; 2021 Dec; 11(1):. PubMed ID: 35011637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different outcomes of telomere-dependent anaphase bridges.
    Tusell L; Pampalona J; Soler D; Frías C; Genescà A
    Biochem Soc Trans; 2010 Dec; 38(6):1698-703. PubMed ID: 21118150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional disorganization of the cancer genome occurs coincident with long-range genetic and epigenetic alterations.
    Taberlay PC; Achinger-Kawecka J; Lun AT; Buske FA; Sabir K; Gould CM; Zotenko E; Bert SA; Giles KA; Bauer DC; Smyth GK; Stirzaker C; O'Donoghue SI; Clark SJ
    Genome Res; 2016 Jun; 26(6):719-31. PubMed ID: 27053337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human chromosome-specific aneuploidy is influenced by DNA-dependent centromeric features.
    Dumont M; Gamba R; Gestraud P; Klaasen S; Worrall JT; De Vries SG; Boudreau V; Salinas-Luypaert C; Maddox PS; Lens SM; Kops GJ; McClelland SE; Miga KH; Fachinetti D
    EMBO J; 2020 Jan; 39(2):e102924. PubMed ID: 31750958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.