These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 36922830)
1. Improving the production of 9α-hydroxy-4-androstene-3,17-dione from phytosterols by 3-ketosteroid-Δ Liu X; Zhang J; Yuan C; Du G; Han S; Shi J; Sun J; Zhang B Microb Cell Fact; 2023 Mar; 22(1):53. PubMed ID: 36922830 [TBL] [Abstract][Full Text] [Related]
2. Phytosterol conversion into C9 non-hydroxylated derivatives through gene regulation in Mycobacterium fortuitum. Liu X; He B; Zhang J; Yuan C; Han S; Du G; Shi J; Sun J; Zhang B Appl Microbiol Biotechnol; 2023 Dec; 107(24):7635-7646. PubMed ID: 37831185 [TBL] [Abstract][Full Text] [Related]
3. Identification, function, and application of 3-ketosteroid Δ1-dehydrogenase isozymes in Mycobacterium neoaurum DSM 1381 for the production of steroidic synthons. Zhang R; Liu X; Wang Y; Han Y; Sun J; Shi J; Zhang B Microb Cell Fact; 2018 May; 17(1):77. PubMed ID: 29776364 [TBL] [Abstract][Full Text] [Related]
4. Efficient Production of 9,22-Dihydroxy-23,24-bisnorchol-4-ene-3-one from Phytosterols by Modifying Multiple Genes in Han S; Liu X; He B; Zhai X; Yuan C; Li Y; Lin W; Wang H; Zhang B Int J Mol Sci; 2024 Mar; 25(7):. PubMed ID: 38612391 [TBL] [Abstract][Full Text] [Related]
5. Engineered 3-Ketosteroid 9α-Hydroxylases in Mycobacterium neoaurum: an Efficient Platform for Production of Steroid Drugs. Liu HH; Xu LQ; Yao K; Xiong LB; Tao XY; Liu M; Wang FQ; Wei DZ Appl Environ Microbiol; 2018 Jul; 84(14):. PubMed ID: 29728384 [TBL] [Abstract][Full Text] [Related]
6. Characterization and engineering of 3-ketosteroid-△1-dehydrogenase and 3-ketosteroid-9α-hydroxylase in Mycobacterium neoaurum ATCC 25795 to produce 9α-hydroxy-4-androstene-3,17-dione through the catabolism of sterols. Yao K; Xu LQ; Wang FQ; Wei DZ Metab Eng; 2014 Jul; 24():181-91. PubMed ID: 24831710 [TBL] [Abstract][Full Text] [Related]
7. Loop pathways are responsible for tuning the accumulation of C19- and C22-sterol intermediates in the mycobacterial phytosterol degradation pathway. Song S; He J; Gao M; Huang Y; Cheng X; Su Z Microb Cell Fact; 2023 Jan; 22(1):19. PubMed ID: 36710325 [TBL] [Abstract][Full Text] [Related]
8. Production of 9,21-dihydroxy-20-methyl-pregna-4-en-3-one from phytosterols in Mycobacterium neoaurum by modifying multiple genes and improving the intracellular environment. Yuan CY; Ma ZG; Zhang JX; Liu XC; Du GL; Sun JS; Shi JP; Zhang BG Microb Cell Fact; 2021 Dec; 20(1):229. PubMed ID: 34949197 [TBL] [Abstract][Full Text] [Related]
9. Molecular characterization of three 3-ketosteroid-Δ(1)-dehydrogenase isoenzymes of Rhodococcus ruber strain Chol-4. Fernández de las Heras L; van der Geize R; Drzyzga O; Perera J; María Navarro Llorens J J Steroid Biochem Mol Biol; 2012 Nov; 132(3-5):271-81. PubMed ID: 22771584 [TBL] [Abstract][Full Text] [Related]
11. Efficient conversion of phytosterols into 4-androstene-3,17-dione and its C1,2-dehydrogenized and 9α-hydroxylated derivatives by engineered Mycobacteria. Li X; Chen T; Peng F; Song S; Yu J; Sidoine DN; Cheng X; Huang Y; He Y; Su Z Microb Cell Fact; 2021 Aug; 20(1):158. PubMed ID: 34399754 [TBL] [Abstract][Full Text] [Related]
12. Role Identification and Application of SigD in the Transformation of Soybean Phytosterol to 9α-Hydroxy-4-androstene-3,17-dione in Mycobacterium neoaurum. Xiong LB; Liu HH; Xu LQ; Wei DZ; Wang FQ J Agric Food Chem; 2017 Jan; 65(3):626-631. PubMed ID: 28035826 [TBL] [Abstract][Full Text] [Related]
13. Functional differentiation of 3-ketosteroid Δ Guevara G; Fernández de Las Heras L; Perera J; Navarro Llorens JM Microb Cell Fact; 2017 Mar; 16(1):42. PubMed ID: 28288625 [TBL] [Abstract][Full Text] [Related]
14. Two-Step Bioprocess for Reducing Nucleus Degradation in Phytosterol Bioconversion by Mycobacterium neoaurum NwIB-R10 Wang X; Hua C; Xu X; Wei D Appl Biochem Biotechnol; 2019 May; 188(1):138-146. PubMed ID: 30370444 [TBL] [Abstract][Full Text] [Related]
15. Enhancing production and purity of 9-OH-AD from phytosterols by balancing metabolic flux of the side-chain degradation and 9-position hydroxylation in Mycobacterium neoaurum. Zhu X; Wang X; Zhang J; Wang X Biotechnol J; 2024 Jan; 19(1):e2300439. PubMed ID: 38129322 [TBL] [Abstract][Full Text] [Related]
16. Engineering phytosterol transport system in Mycobacterium sp. strain MS136 enhances production of 9α-hydroxy-4-androstene-3,17-dione. He K; Sun H; Song H Biotechnol Lett; 2018 Apr; 40(4):673-678. PubMed ID: 29392454 [TBL] [Abstract][Full Text] [Related]
17. Enhancing the bioconversion of phytosterols to steroidal intermediates by the deficiency of kasB in the cell wall synthesis of Mycobacterium neoaurum. Xiong LB; Liu HH; Zhao M; Liu YJ; Song L; Xie ZY; Xu YX; Wang FQ; Wei DZ Microb Cell Fact; 2020 Mar; 19(1):80. PubMed ID: 32228591 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of 9α-Hydroxy-4-androstene-3,17-dione Production from Soybean Phytosterols by Deficiency of a Regulated Intramembrane Proteolysis Metalloprotease in Mycobacterium neoaurum. Xiong LB; Sun WJ; Liu YJ; Wang FQ; Wei DZ J Agric Food Chem; 2017 Dec; 65(48):10520-10525. PubMed ID: 29131627 [TBL] [Abstract][Full Text] [Related]