These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 36922934)

  • 41. Differential abundance of CK1α provides selectivity for pharmacological CK1α activators to target WNT-dependent tumors.
    Li B; Orton D; Neitzel LR; Astudillo L; Shen C; Long J; Chen X; Kirkbride KC; Doundoulakis T; Guerra ML; Zaias J; Fei DL; Rodriguez-Blanco J; Thorne C; Wang Z; Jin K; Nguyen DM; Sands LR; Marchetti F; Abreu MT; Cobb MH; Capobianco AJ; Lee E; Robbins DJ
    Sci Signal; 2017 Jun; 10(485):. PubMed ID: 28655862
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pharmacological Wnt ligand inhibition overcomes key tumor-mediated resistance pathways to anti-PD-1 immunotherapy.
    DeVito NC; Sturdivant M; Thievanthiran B; Xiao C; Plebanek MP; Salama AKS; Beasley GM; Holtzhausen A; Novotny-Diermayr V; Strickler JH; Hanks BA
    Cell Rep; 2021 May; 35(5):109071. PubMed ID: 33951424
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The use of porcupine inhibitors to target Wnt-driven cancers.
    Ho SY; Keller TH
    Bioorg Med Chem Lett; 2015 Dec; 25(23):5472-6. PubMed ID: 26522946
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer.
    Nomi T; Sho M; Akahori T; Hamada K; Kubo A; Kanehiro H; Nakamura S; Enomoto K; Yagita H; Azuma M; Nakajima Y
    Clin Cancer Res; 2007 Apr; 13(7):2151-7. PubMed ID: 17404099
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Combination of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and actinomycin D induces apoptosis even in TRAIL-resistant human pancreatic cancer cells.
    Matsuzaki H; Schmied BM; Ulrich A; Standop J; Schneider MB; Batra SK; Picha KS; Pour PM
    Clin Cancer Res; 2001 Feb; 7(2):407-14. PubMed ID: 11234897
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Novel GUCY2C-CD3 T-Cell Engaging Bispecific Construct (PF-07062119) for the Treatment of Gastrointestinal Cancers.
    Mathur D; Root AR; Bugaj-Gaweda B; Bisulco S; Tan X; Fang W; Kearney JC; Lucas J; Guffroy M; Golas J; Rohde CM; Stevens C; Kamperschroer C; Kelleher K; Lawrence-Henderson RF; Upeslacis E; Yao J; Narula J; LaVallie ER; Fernandez DR; Buetow BS; Rosfjord E; Bloom L; King LE; Tchistiakova L; Nguyen A; Sapra P
    Clin Cancer Res; 2020 May; 26(9):2188-2202. PubMed ID: 31996389
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification of the DEAD box RNA helicase DDX3 as a therapeutic target in colorectal cancer.
    Heerma van Voss MR; Vesuna F; Trumpi K; Brilliant J; Berlinicke C; de Leng W; Kranenburg O; Offerhaus GJ; Bürger H; van der Wall E; van Diest PJ; Raman V
    Oncotarget; 2015 Sep; 6(29):28312-26. PubMed ID: 26311743
    [TBL] [Abstract][Full Text] [Related]  

  • 48. RETRACTED: KYA1797K down-regulates PD-L1 in colon cancer stem cells to block immune evasion by suppressing the β-catenin/STT3 signaling pathway.
    Ruan Z; Liang M; Lai M; Shang L; Deng X; Su X
    Int Immunopharmacol; 2020 Jan; 78():106003. PubMed ID: 31812723
    [TBL] [Abstract][Full Text] [Related]  

  • 49. WNT signaling and cancer stemness.
    Katoh M; Katoh M
    Essays Biochem; 2022 Sep; 66(4):319-331. PubMed ID: 35837811
    [TBL] [Abstract][Full Text] [Related]  

  • 50. First-in-Class Inhibitors of Oncogenic CHD1L with Preclinical Activity against Colorectal Cancer.
    Abbott JM; Zhou Q; Esquer H; Pike L; Broneske TP; Rinaldetti S; Abraham AD; Ramirez DA; Lunghofer PJ; Pitts TM; Regan DP; Tan AC; Gustafson DL; Messersmith WA; LaBarbera DV
    Mol Cancer Ther; 2020 Aug; 19(8):1598-1612. PubMed ID: 32499299
    [TBL] [Abstract][Full Text] [Related]  

  • 51. E7386, a Selective Inhibitor of the Interaction between β-Catenin and CBP, Exerts Antitumor Activity in Tumor Models with Activated Canonical Wnt Signaling.
    Yamada K; Hori Y; Inoue S; Yamamoto Y; Iso K; Kamiyama H; Yamaguchi A; Kimura T; Uesugi M; Ito J; Matsuki M; Nakamoto K; Harada H; Yoneda N; Takemura A; Kushida I; Wakayama N; Kubara K; Kato Y; Semba T; Yokoi A; Matsukura M; Odagami T; Iwata M; Tsuruoka A; Uenaka T; Matsui J; Matsushima T; Nomoto K; Kouji H; Owa T; Funahashi Y; Ozawa Y
    Cancer Res; 2021 Feb; 81(4):1052-1062. PubMed ID: 33408116
    [TBL] [Abstract][Full Text] [Related]  

  • 52. FS222, a CD137/PD-L1 Tetravalent Bispecific Antibody, Exhibits Low Toxicity and Antitumor Activity in Colorectal Cancer Models.
    Lakins MA; Koers A; Giambalvo R; Munoz-Olaya J; Hughes R; Goodman E; Marshall S; Wollerton F; Batey S; Gliddon D; Tuna M; Brewis N
    Clin Cancer Res; 2020 Aug; 26(15):4154-4167. PubMed ID: 32345647
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inhibition of phospholipase D1 induces immunogenic cell death and potentiates cancer immunotherapy in colorectal cancer.
    Hwang WC; Song D; Lee H; Oh C; Lim SH; Bae HJ; Kim ND; Han G; Min DS
    Exp Mol Med; 2022 Sep; 54(9):1563-1576. PubMed ID: 36131027
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Synthetic Small Molecule FL3 Combats Intestinal Tumorigenesis via Axin1-Mediated Inhibition of Wnt/β-Catenin Signaling.
    Jackson DN; Alula KM; Delgado-Deida Y; Tabti R; Turner K; Wang X; Venuprasad K; Souza RF; Désaubry L; Theiss AL
    Cancer Res; 2020 Sep; 80(17):3519-3529. PubMed ID: 32665357
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Control of Wnt Receptor Turnover by R-spondin-ZNRF3/RNF43 Signaling Module and Its Dysregulation in Cancer.
    Hao HX; Jiang X; Cong F
    Cancers (Basel); 2016 Jun; 8(6):. PubMed ID: 27338477
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Exploration of the linkage elements of porcupine antagonists led to potent Wnt signaling pathway inhibitors.
    Dong Y; Li K; Xu Z; Ma H; Zheng J; Hu Z; He S; Wu Y; Sun Z; Luo L; Li J; Zhang H; Zhang X
    Bioorg Med Chem; 2015 Nov; 23(21):6855-68. PubMed ID: 26455655
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bisleuconothine A, a bisindole alkaloid, inhibits colorectal cancer cell in vitro and in vivo targeting Wnt signaling.
    Kong LM; Feng T; Wang YY; Li XY; Ye ZN; An T; Qing C; Luo XD; Li Y
    Oncotarget; 2016 Mar; 7(9):10203-14. PubMed ID: 26862734
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tankyrase Inhibition Blocks Wnt/β-Catenin Pathway and Reverts Resistance to PI3K and AKT Inhibitors in the Treatment of Colorectal Cancer.
    Arqués O; Chicote I; Puig I; Tenbaum SP; Argilés G; Dienstmann R; Fernández N; Caratù G; Matito J; Silberschmidt D; Rodon J; Landolfi S; Prat A; Espín E; Charco R; Nuciforo P; Vivancos A; Shao W; Tabernero J; Palmer HG
    Clin Cancer Res; 2016 Feb; 22(3):644-56. PubMed ID: 26224873
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Raddeanin A inhibits growth and induces apoptosis in human colorectal cancer through downregulating the Wnt/β-catenin and NF-κB signaling pathway.
    Wang Y; Bao X; Zhao A; Zhang J; Zhang M; Zhang Q; Ma B
    Life Sci; 2018 Aug; 207():532-549. PubMed ID: 29972765
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Loss of endogenous RNF43 function enhances proliferation and tumour growth of intestinal and gastric cells.
    Neumeyer V; Grandl M; Dietl A; Brutau-Abia A; Allgäuer M; Kalali B; Zhang Y; Pan KF; Steiger K; Vieth M; Anton M; Mejías-Luque R; Gerhard M
    Carcinogenesis; 2019 Jun; 40(4):551-559. PubMed ID: 30380024
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.