These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 36922936)

  • 1. ZL-1211 Exhibits Robust Antitumor Activity by Enhancing ADCC and Activating NK Cell-mediated Inflammation in CLDN18.2-High and -Low Expressing Gastric Cancer Models.
    Konno H; Lin T; Wu R; Dai X; Li S; Wang G; Chen M; Li W; Wang L; Sun BC; Luo Z; Huang T; Chen Y; Zhang J; Ye Q; Bellovin D; Wan B; Kang L; Szeto C; Hsu K; Kabbarah O
    Cancer Res Commun; 2022 Sep; 2(9):937-950. PubMed ID: 36922936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CLDN18.2 and 4-1BB bispecific antibody givastomig exerts antitumor activity through CLDN18.2-expressing tumor-directed T-cell activation.
    Gao J; Wang Z; Jiang W; Zhang Y; Meng Z; Niu Y; Sheng Z; Chen C; Liu X; Chen X; Liu C; Jia K; Zhang C; Liao H; Jung J; Sung E; Chung H; Zhang JZ; Zhu AX; Shen L
    J Immunother Cancer; 2023 Jun; 11(6):. PubMed ID: 37364935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anti-tumor effects of NK cells and anti-PD-L1 antibody with antibody-dependent cellular cytotoxicity in PD-L1-positive cancer cell lines.
    Park JE; Kim SE; Keam B; Park HR; Kim S; Kim M; Kim TM; Doh J; Kim DW; Heo DS
    J Immunother Cancer; 2020 Aug; 8(2):. PubMed ID: 32830112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A bispecific antibody targeting HER2 and CLDN18.2 eliminates gastric cancer cells expressing dual antigens by enhancing the immune effector function.
    Yue J; Shao S; Zhou J; Luo W; Xu Y; Zhang Q; Jiang J; Zhu MM
    Invest New Drugs; 2024 Feb; 42(1):106-115. PubMed ID: 38198061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Claudin18.2-Specific Chimeric Antigen Receptor Engineered T Cells for the Treatment of Gastric Cancer.
    Jiang H; Shi Z; Wang P; Wang C; Yang L; Du G; Zhang H; Shi B; Jia J; Li Q; Wang H; Li Z
    J Natl Cancer Inst; 2019 Apr; 111(4):409-418. PubMed ID: 30203099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of CLDN18.2 expression on effector cells mediating antibody-dependent cellular cytotoxicity in gastric cancer.
    Matsuishi A; Nakajima S; Saito M; Saito K; Fukai S; Tsumuraya H; Kanoda R; Kikuchi T; Nirei A; Kaneta A; Okayama H; Mimura K; Hanayama H; Sakamoto W; Momma T; Saze Z; Kono K
    Sci Rep; 2024 Aug; 14(1):17916. PubMed ID: 39095563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a Humanized VHH Based Recombinant Antibody Targeting Claudin 18.2 Positive Cancers.
    Zhong W; Lu Y; Ma Z; He Y; Ding Y; Yao G; Zhou Z; Dong J; Fang Y; Jiang W; Wang W; Huang Y
    Front Immunol; 2022; 13():885424. PubMed ID: 35837391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel Fc-engineered cathepsin D-targeting antibody enhances ADCC, triggers tumor-infiltrating NK cell recruitment, and improves treatment with paclitaxel and enzalutamide in triple-negative breast cancer.
    Desroys du Roure P; Lajoie L; Mallavialle A; Alcaraz LB; Mansouri H; Fenou L; Garambois V; Rubio L; David T; Coenon L; Boissière-Michot F; Chateau MC; Ngo G; Jarlier M; Villalba M; Martineau P; Laurent-Matha V; Roger P; Guiu S; Chardès T; Gros L; Liaudet-Coopman E
    J Immunother Cancer; 2024 Jan; 12(1):. PubMed ID: 38290768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a Novel CLDN18.2-directed Monoclonal Antibody and Antibody-Drug Conjugate for Treatment of CLDN18.2-Positive Cancers.
    O'Brien NA; McDermott MSJ; Zhang J; Gong KW; Lu M; Hoffstrom B; Luo T; Ayala R; Chau K; Liang M; Madrid AM; Donahue TR; Glaspy JA; Presta L; Slamon DJ
    Mol Cancer Ther; 2023 Dec; 22(12):1365-1375. PubMed ID: 37788341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Canine non-B, non-T NK lymphocytes have a potential antibody-dependent cellular cytotoxicity function against antibody-coated tumor cells.
    Kim Y; Lee SH; Kim CJ; Lee JJ; Yu D; Ahn S; Shin DJ; Kim SK
    BMC Vet Res; 2019 Oct; 15(1):339. PubMed ID: 31610784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering of CD34+ progenitor-derived natural killer cells with higher-affinity CD16a for enhanced antibody-dependent cellular cytotoxicity.
    van Hauten PMM; Hooijmaijers L; Vidal-Manrique M; van der Waart AB; Hobo W; Wu J; Blijlevens NMA; Jansen JH; Walcheck B; Schaap NPM; de Jonge PKJD; Dolstra H
    Cytotherapy; 2024 Mar; 26(3):252-260. PubMed ID: 38127030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of zolbetuximab in pancreatic cancer models.
    Türeci Ӧ; Mitnacht-Kraus R; Wöll S; Yamada T; Sahin U
    Oncoimmunology; 2019; 8(1):e1523096. PubMed ID: 30546962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [
    Zeng Z; Li L; Tao J; Liu J; Li H; Qian X; Yang Z; Zhu H
    Eur J Nucl Med Mol Imaging; 2024 Apr; 51(5):1221-1232. PubMed ID: 38062170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation and preclinical characterization of an NKp80-Fc fusion protein for redirected cytolysis of natural killer (NK) cells against leukemia.
    Deng G; Zheng X; Zhou J; Wei H; Tian Z; Sun R
    J Biol Chem; 2015 Sep; 290(37):22474-84. PubMed ID: 26198633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cetuximab therapy in head and neck cancer: immune modulation with interleukin-12 and other natural killer cell-activating cytokines.
    Luedke E; Jaime-Ramirez AC; Bhave N; Roda J; Choudhary MM; Kumar B; Teknos TN; Carson WE
    Surgery; 2012 Sep; 152(3):431-40. PubMed ID: 22770960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impaired antibody-dependent cellular cytotoxicity mediated by herceptin in patients with gastric cancer.
    Kono K; Takahashi A; Ichihara F; Sugai H; Fujii H; Matsumoto Y
    Cancer Res; 2002 Oct; 62(20):5813-7. PubMed ID: 12384543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual functional monoclonal antibody PF-04605412 targets integrin alpha5beta1 and elicits potent antibody-dependent cellular cytotoxicity.
    Li G; Zhang L; Chen E; Wang J; Jiang X; Chen JH; Wickman G; Amundson K; Bergqvist S; Zobel J; Buckman D; Baxi SM; Bender SL; Casperson GF; Hu-Lowe DD
    Cancer Res; 2010 Dec; 70(24):10243-54. PubMed ID: 21159645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A potential therapy for chordoma via antibody-dependent cell-mediated cytotoxicity employing NK or high-affinity NK cells in combination with cetuximab.
    Fujii R; Schlom J; Hodge JW
    J Neurosurg; 2018 May; 128(5):1419-1427. PubMed ID: 28753113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pluripotent stem cell-derived NK cells with high-affinity noncleavable CD16a mediate improved antitumor activity.
    Zhu H; Blum RH; Bjordahl R; Gaidarova S; Rogers P; Lee TT; Abujarour R; Bonello GB; Wu J; Tsai PF; Miller JS; Walcheck B; Valamehr B; Kaufman DS
    Blood; 2020 Feb; 135(6):399-410. PubMed ID: 31856277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of Radiolabeled Zolbetuximab Targeting CLDN18.2 and Its Preliminary Evaluation for Potential Clinical Applications.
    Wang Y; Ma L; Kuang Z; Li D; Yang J; Liu Y; Zhang L; Li Z; Li Q
    Mol Pharm; 2024 Aug; 21(8):3838-3847. PubMed ID: 38949095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.