These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 36923124)
1. Detection of peanut seed vigor based on hyperspectral imaging and chemometrics. Zou Z; Chen J; Wu W; Luo J; Long T; Wu Q; Wang Q; Zhen J; Zhao Y; Wang Y; Chen Y; Zhou M; Xu L Front Plant Sci; 2023; 14():1127108. PubMed ID: 36923124 [TBL] [Abstract][Full Text] [Related]
2. Nondestructive Detection of Sunflower Seed Vigor and Moisture Content Based on Hyperspectral Imaging and Chemometrics. Huang P; Yuan J; Yang P; Xiao F; Zhao Y Foods; 2024 Apr; 13(9):. PubMed ID: 38731691 [TBL] [Abstract][Full Text] [Related]
3. Rapid nondestructive detection of peanut varieties and peanut mildew based on hyperspectral imaging and stacked machine learning models. Wu Q; Xu L; Zou Z; Wang J; Zeng Q; Wang Q; Zhen J; Wang Y; Zhao Y; Zhou M Front Plant Sci; 2022; 13():1047479. PubMed ID: 36438117 [TBL] [Abstract][Full Text] [Related]
4. Combining Hyperspectral Techniques and Genome-Wide Association Studies to Predict Peanut Seed Vigor and Explore Associated Genetic Loci. Xiong Z; Liu S; Tan J; Huang Z; Li X; Zhuang G; Fang Z; Chen T; Zhang L Int J Mol Sci; 2024 Aug; 25(15):. PubMed ID: 39125982 [TBL] [Abstract][Full Text] [Related]
5. Prediction of Sweet Corn Seed Germination Based on Hyperspectral Image Technology and Multivariate Data Regression. Cui H; Cheng Z; Li P; Miao A Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32842673 [TBL] [Abstract][Full Text] [Related]
6. Non-destructive Detection of Fatty Acid Content of Camellia Seed Based on Hyperspectral. Yang X; Jiang P; Luo Y; Shi Y J Oleo Sci; 2023 Jan; 72(1):69-77. PubMed ID: 36504187 [TBL] [Abstract][Full Text] [Related]
7. Rapid and Nondestructive Measurement of Rice Seed Vitality of Different Years Using Near-Infrared Hyperspectral Imaging. He X; Feng X; Sun D; Liu F; Bao Y; He Y Molecules; 2019 Jun; 24(12):. PubMed ID: 31207950 [TBL] [Abstract][Full Text] [Related]
8. Hyperspectral imaging coupled with multivariate methods for seed vitality estimation and forecast for Quercus variabilis. Pang L; Wang J; Men S; Yan L; Xiao J Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jan; 245():118888. PubMed ID: 32947159 [TBL] [Abstract][Full Text] [Related]
9. Sugarbeet Seed Germination Prediction Using Hyperspectral Imaging Information Fusion. Wang J; Sun L; Xing W; Feng G; Yang J; Li J; Li W Appl Spectrosc; 2023 Jul; 77(7):710-722. PubMed ID: 37246428 [TBL] [Abstract][Full Text] [Related]
10. Non-Destructive Testing of Alfalfa Seed Vigor Based on Multispectral Imaging Technology. Zhang S; Zeng H; Ji W; Yi K; Yang S; Mao P; Wang Z; Yu H; Li M Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408374 [TBL] [Abstract][Full Text] [Related]
11. Research on nondestructive detection of sweet-waxy corn seed varieties and mildew based on stacked ensemble learning and hyperspectral feature fusion technology. Zou Z; Zhen J; Wang Q; Wu Q; Li M; Yuan D; Cui Q; Zhou M; Xu L Spectrochim Acta A Mol Biomol Spectrosc; 2024 Dec; 322():124816. PubMed ID: 39032232 [TBL] [Abstract][Full Text] [Related]
12. Hyperspectral imaging technology combined with deep forest model to identify frost-damaged rice seeds. Zhang L; Sun H; Rao Z; Ji H Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 229():117973. PubMed ID: 31887678 [TBL] [Abstract][Full Text] [Related]
13. Recognition of maize seed varieties based on hyperspectral imaging technology and integrated learning algorithms. Yang H; Wang C; Zhang H; Zhou Y; Luo B PeerJ Comput Sci; 2023; 9():e1354. PubMed ID: 37346683 [TBL] [Abstract][Full Text] [Related]
14. Rapid and nondestructive watermelon (Citrullus lanatus) seed viability detection based on visible near-infrared hyperspectral imaging technology and machine learning algorithms. Sun J; Nirere A; Dusabe KD; Yuhao Z; Adrien G J Food Sci; 2024 Jul; 89(7):4403-4418. PubMed ID: 38957090 [TBL] [Abstract][Full Text] [Related]
15. Nondestructive detection of lead content in oilseed rape leaves under silicon action using hyperspectral image. Zhou X; Liu Y; Sun J; Li B; Xiao G Sci Total Environ; 2024 Nov; 949():175076. PubMed ID: 39069175 [TBL] [Abstract][Full Text] [Related]
16. Identification of Soybean Seed Varieties Based on Hyperspectral Imaging Technology. Zhu S; Chao M; Zhang J; Xu X; Song P; Zhang J; Huang Z Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795146 [TBL] [Abstract][Full Text] [Related]
17. [Study on Identification of Immature Corn Seed Using Hyperspectral Imaging]. Yang XL; You ZH; Cheng F Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Dec; 36(12):4028-33. PubMed ID: 30243269 [TBL] [Abstract][Full Text] [Related]
18. Identification of Maize Kernel Vigor under Different Accelerated Aging Times Using Hyperspectral Imaging. Feng L; Zhu S; Zhang C; Bao Y; Feng X; He Y Molecules; 2018 Nov; 23(12):. PubMed ID: 30477266 [TBL] [Abstract][Full Text] [Related]
19. An end-to-end seed vigor prediction model for imbalanced samples using hyperspectral image. Pang T; Chen C; Fu R; Wang X; Yu H Front Plant Sci; 2023; 14():1322391. PubMed ID: 38192695 [TBL] [Abstract][Full Text] [Related]
20. [Origin identification of Gardeniae Fructus based on hyperspectral imaging technology]. Zhou C; Wang H; Yang J; Zhang XB Zhongguo Zhong Yao Za Zhi; 2022 Nov; 47(22):6027-6033. PubMed ID: 36471926 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]