These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 36923124)
21. Identification of Defective Maize Seeds Using Hyperspectral Imaging Combined with Deep Learning. Xu P; Sun W; Xu K; Zhang Y; Tan Q; Qing Y; Yang R Foods; 2022 Dec; 12(1):. PubMed ID: 36613360 [TBL] [Abstract][Full Text] [Related]
22. NIR Hyperspectral Imaging Technology Combined with Multivariate Methods to Study the Residues of Different Concentrations of Omethoate on Wheat Grain Surface. Zhang L; Rao Z; Ji H Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31319577 [TBL] [Abstract][Full Text] [Related]
23. [Variety recognition of Chinese cabbage seeds by hyperspectral imaging combined with machine learning]. Cheng SX; Kong WW; Zhang C; Liu F; He Y Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Sep; 34(9):2519-22. PubMed ID: 25532356 [TBL] [Abstract][Full Text] [Related]
24. Nondestructive Classification of Maize Moldy Seeds by Hyperspectral Imaging and Optimal Machine Learning Algorithms. Hu Y; Wang Z; Li X; Li L; Wang X; Wei Y Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015825 [TBL] [Abstract][Full Text] [Related]
25. Hyperspectral Monitoring of Powdery Mildew Disease Severity in Wheat Based on Machine Learning. Feng ZH; Wang LY; Yang ZQ; Zhang YY; Li X; Song L; He L; Duan JZ; Feng W Front Plant Sci; 2022; 13():828454. PubMed ID: 35386677 [TBL] [Abstract][Full Text] [Related]
26. Cotton seed cultivar identification based on the fusion of spectral and textural features. Liu X; Guo P; Xu Q; Du W PLoS One; 2024; 19(5):e0303219. PubMed ID: 38805455 [TBL] [Abstract][Full Text] [Related]
27. Research on non-destructive testing of hotpot oil quality by fluorescence hyperspectral technology combined with machine learning. Zou Z; Wu Q; Wang J; Xu L; Zhou M; Lu Z; He Y; Wang Y; Liu B; Zhao Y Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 284():121785. PubMed ID: 36058172 [TBL] [Abstract][Full Text] [Related]
28. The Classification of Rice Blast Resistant Seed Based on Ranman Spectroscopy and SVM. He Y; Zhang W; Ma Y; Li J; Ma B Molecules; 2022 Jun; 27(13):. PubMed ID: 35807337 [TBL] [Abstract][Full Text] [Related]
29. Non-destructive detection of single corn seed vigor based on visible/near-infrared spatially resolved spectroscopy combined with chemometrics. Liu W; Luo B; Kang K; Xia Y; Zhang H Spectrochim Acta A Mol Biomol Spectrosc; 2024 May; 312():124089. PubMed ID: 38428212 [TBL] [Abstract][Full Text] [Related]
30. HyperSeed: An End-to-End Method to Process Hyperspectral Images of Seeds. Gao T; Chandran AKN; Paul P; Walia H; Yu H Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960287 [TBL] [Abstract][Full Text] [Related]
31. Rice seed vigor detection based on near-infrared hyperspectral imaging and deep transfer learning. Qi H; Huang Z; Sun Z; Tang Q; Zhao G; Zhu X; Zhang C Front Plant Sci; 2023; 14():1283921. PubMed ID: 37936942 [TBL] [Abstract][Full Text] [Related]
32. Rapid and visual detection of the main chemical compositions in maize seeds based on Raman hyperspectral imaging. Yang G; Wang Q; Liu C; Wang X; Fan S; Huang W Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jul; 200():186-194. PubMed ID: 29680497 [TBL] [Abstract][Full Text] [Related]
33. Hyperspectral prediction of sugarbeet seed germination based on gauss kernel SVM. Yang J; Sun L; Xing W; Feng G; Bai H; Wang J Spectrochim Acta A Mol Biomol Spectrosc; 2021 May; 253():119585. PubMed ID: 33662700 [TBL] [Abstract][Full Text] [Related]
34. Application of long-wave near infrared hyperspectral imaging for determination of moisture content of single maize seed. Wang Z; Fan S; Wu J; Zhang C; Xu F; Yang X; Li J Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jun; 254():119666. PubMed ID: 33744703 [TBL] [Abstract][Full Text] [Related]
35. Application of hyperspectral imaging and chemometrics for variety classification of maize seeds. Zhao Y; Zhu S; Zhang C; Feng X; Feng L; He Y RSC Adv; 2018 Jan; 8(3):1337-1345. PubMed ID: 35540920 [TBL] [Abstract][Full Text] [Related]
36. Spectral and Image Integrated Analysis of Hyperspectral Data for Waxy Corn Seed Variety Classification. Yang X; Hong H; You Z; Cheng F Sensors (Basel); 2015 Jul; 15(7):15578-94. PubMed ID: 26140347 [TBL] [Abstract][Full Text] [Related]
37. Rapid and Non-Destructive Prediction of Moisture Content in Maize Seeds Using Hyperspectral Imaging. Xue H; Xu X; Yang Y; Hu D; Niu G Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544118 [TBL] [Abstract][Full Text] [Related]
38. Rapid and Non-destructive Classification of New and Aged Maize Seeds Using Hyperspectral Image and Chemometric Methods. Wang Z; Huang W; Tian X; Long Y; Li L; Fan S Front Plant Sci; 2022; 13():849495. PubMed ID: 35620676 [TBL] [Abstract][Full Text] [Related]
39. Identification of Rice Seed Varieties Based on Near-Infrared Hyperspectral Imaging Technology Combined with Deep Learning. Jin B; Zhang C; Jia L; Tang Q; Gao L; Zhao G; Qi H ACS Omega; 2022 Feb; 7(6):4735-4749. PubMed ID: 35187294 [TBL] [Abstract][Full Text] [Related]
40. Rice Seed Purity Identification Technology Using Hyperspectral Image with LASSO Logistic Regression Model. Liu W; Zeng S; Wu G; Li H; Chen F Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34206783 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]